Advertisement

Fatigue crack growth resistance of SiCp reinforced Al alloys: Effects of particle size, particle volume fraction, and matrix strength

  • M. T. Milan
  • P. Bowen
Testing And Evaluation

Abstract

The main aim of this work was to study the effects of particle size, particle volume fraction, and matrix strength on the long fatigue crack growth resistance of two different grades of Al alloys (Al2124-T1 and Al6061-T1) reinforced with SiC particles. Basically, it was found that an increase in particle volume fraction and particle size increases the fatigue crack growth resistance at near threshold and Paris regimen, with matrix strength having a smaller effect. Near final failure, the stronger and more brittle composites are affected more by static modes of failure as the applied maximum stress intensity factor (K max) approaches mode I plane strain fracture toughness (K IC).

Keywords

composite fatigue crack growth matrix strength particle size volume fraction 

References

  1. 1.
    J.C. Healy, M.D. Wright, M.D. Halliday, and C.J. Beevers. The Fatigue Characteristics of 8090 Reinforced With Silicon Carbide Particulate, M. Peters and P.J. Winkler, ed., Proceedings of the 6th International Al-Li Conference, Garmish-Partenkirchen, Germany, 7–11 Oct 1991, DGM Metallurgy Information, 1992, p 1365–1370Google Scholar
  2. 2.
    J.K. Shang and R.O. Ritchie, On the Particle Size Dependence of Fatigue Crack Propagation Thresholds in SiC Particulate Reinforced Al Alloy Composites: Role of Crack Closure and Crack Trapping, Acta Metall., Vol 37 (No. 8), 1989, p 2267–2278CrossRefGoogle Scholar
  3. 3.
    J.J. Mason and R.O. Ritchie, Fatigue Crack Growth Resistance in SiC Particulate and Whisker Reinforced P/M 2124 Aluminium Matrix Composites, Mater. Sci. Eng., Vol A231, 1997, p 170–182Google Scholar
  4. 4.
    K. Tanaka, Y. Akiniwa, K. Shimizu, H. Kimura, and S. Adachi, Fatigue Thresholds of Discontinuously Reinforced Aluminum Alloy Correlated to Tensile Strength, Int. J. Fatigue, Vol 22, 2000, p 431–439CrossRefGoogle Scholar
  5. 5.
    T. Kobayashi, H. Iwatani, S. Hakamada, M. Niinomi, and H. Tada, Fatigue Crack Propagation Characteristics in SiC/6061-T6 Composites, J. Jpn. Inst. Metals, Vol 55 (No. 1), 1991, p 72–78Google Scholar
  6. 6.
    J. Wasen and E. Heier, Fatigue Crack Growth Thresholds: The Influence of Young’s Modulus and Fracture Surface Roughness, Int. J. Fatigue, Vol 20 (No. 10), 1998, p 737–742CrossRefGoogle Scholar
  7. 7.
    R. Pippan and P. Weinert, The Effective Threshold of Fatigue Crack Propagation in Al Alloys: I. The Influence of Particle Reinforcement, Phil. Mag. A., Vol 77 (No. 4), 1998, p 875–886Google Scholar
  8. 8.
    F. Erdogan, Fracture Problems in Composite Materials, Eng. Fract. Mech., Vol 4, 1972, p 811–840CrossRefGoogle Scholar
  9. 9.
    Y. Sugimura, S. Suresh, P.G. Lim, and C.F. Shih, Fracture Normal to a Bimaterial Interface: Effects of Plasticity on Crack-Tip Shielding and Amplification, Acta Metall. Mater., Vol 43 (No. 3), 1995, p 1157–1169CrossRefGoogle Scholar
  10. 10.
    M.T. Milan and P. Bowen, Effects of Particle Size, Particle Volume Fraction and Matrix Composition of Selectively Reinforced Aluminium Alloys, Proceedings of I MECH E Part L, J. Mater. Des. Appl., Vol 216 (No. 4), 2002, p 245–255Google Scholar
  11. 11.
    M.T. Milan and P. Bowen, Experimental and Predicted Fatigue Crack Growth Resistance of a Al2124/Al2124+35%SiC Biomaterial, Int. J. Fatigue, Vol 25 (No. 7), 2003, p 649–659CrossRefGoogle Scholar
  12. 12.
    S. Kumai, J.E. King, and J.F. Knott, Fatigue Crack Growth Behaviour in Molten-Metal Processed SiC Particle-Reinforced Al Alloys, Fat. Fract. Eng. Mater. Struct., Vol 15 (No. 1), 1992, p 1–11CrossRefGoogle Scholar
  13. 13.
    J. Boselli, P.D. Pitcher, P.J. Gregson, and L. Sinclair, Numerical Modelling of Particle Distribution Effects on Fatigue in Al-SiC Composites, Mater. Sci. Eng., Vol A300, 2001, p 113–124Google Scholar
  14. 14.
    A. Niklas, L. Froyen, M. Wevers, and L. Delaey, Acoustic Emission During Fatigue Crack Propagation in SiC Particle Reinforced Al Matrix Composites, Metall. Trans. A, Vol 26A (No. 12), 1995, p 3183–3189CrossRefGoogle Scholar
  15. 15.
    Y. Sugimura and S. Suresh, Effects of SiC Content of Fatigue Crack Growth in Al Alloys Reinforced with SiC Particles, Metall. Trans. A, Vol 23A (No. 8), 1992, p 2231–2242Google Scholar
  16. 16.
    S. Kumai, J.E. King, and J.F. Knott, Short and Long Fatigue Crack Growth in a SiC Reinforced Al Alloy, Fat. Fract. Eng. Mater. Struct., Vol 13 (No. 5), 1990, p 511–524CrossRefGoogle Scholar
  17. 17.
    J.N. Hall, J.W. Jones, and A.K. Sachdev, Particle Size, Volume Fraction and Matrix Strength Effects on Fatigue Behavior and Particle Fracture in 2124 Aluminum-SiC Composites, Mater. Sci. Eng. A, Vol A183, 1994, p 69–80Google Scholar
  18. 18.
    J.K. Shang and R.O. Ritchie, Crack Bridging by Uncracked Ligaments During Fatigue Crack Growth in SiC-Reinforced Al Alloy Composites, Metall. Trans. A, Vol 20A, May 1989, p 897–907Google Scholar
  19. 19.
    T.J.A. Doel, “Fracture and Fatigue of Aluminum Based Particulate-Reinforced MMC’s,” Ph.D. Thesis, University of Birmingham, UK, 1992Google Scholar
  20. 20.
    K. Tokaji, H. Shiota, and K. Kobayashi, Effect of Particle Size on Fatigue Behaviour in SiC Particulate-Reinforced Al Alloy Composites, Fat. Fract. Eng. Mater. Struct., Vol 22, 1999, p 281–288CrossRefGoogle Scholar
  21. 21.
    P.D. Couch, “Fatigue and Fracture of an Aluminum Lithium Based Metal Matrix Composite,” Ph.D. Thesis, University of Birmingham, UK, 1993Google Scholar
  22. 22.
    T. Christman and S. Suresh, Microstructural Development in an Al Alloy-SiC Whisker Composite, Acta Metall., Vol 36 (No. 7), 1988, p 1691–1704CrossRefGoogle Scholar
  23. 23.
    C.P. You, J.V. Lasecki, J.M. Boileau, and J.E. Allison, Aging Effects on Fatigue Crack Growth and Closure in a SiC Reinforced 2124 Aluminum Composite, J. Metall., Vol 40 (No. 7), 1988, p A88-A88Google Scholar
  24. 24.
    D.M. Knowles and J.E. King, The Influence of Ageing on Fatigue Crack Growth in SiC-Particulate Reinforced 8090, Acta Metall. Mater., Vol 39 (No. 5), 1991, p 793–806CrossRefGoogle Scholar
  25. 25.
    R. Pippan, The Effective Threshold of Fatigue Crack Propagation in Al Alloys: I. The Influence of Yield Stress and Chemical Composition. Phil. Mag. A., Vol 77 (No. 4), 1998, p 861–873CrossRefGoogle Scholar
  26. 26.
    J.K. Shang, W. Yu, and R.O. Ritchie, Role of Silicon Carbide Particles in Fatigue Crack Growth in SiC Particulate Reinforced Al Alloy Composites, Mater. Sci. Eng., Vol 102 (No. 2), 1988, p 181–192CrossRefGoogle Scholar
  27. 27.
    B.R. Crawford and J.R. Griffiths, The Role of Reinforcement Particles During Fatigue Cracking of a Micral-20™-Reinforced 6061 Alloy. Fat. Fract. Eng. Mater. Struct., Vol 22, 1999, p 811–819Google Scholar
  28. 28.
    R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials. 2nd ed., Wiley & Sons, 1983Google Scholar

Copyright information

© ASM International 2004

Authors and Affiliations

  • M. T. Milan
    • 1
  • P. Bowen
    • 1
  1. 1.Department of Materials, Aeronautics, Automotive Engineering, Engineering School of São CarlosUniversity of São PauloBrazil

Personalised recommendations