Microstructure and properties of TiB/Ti-6Al-4V coatings produced with laser treatments

  • D. Galvan
  • V. Ocelík
  • Y. Pei
  • B. J. Kooi
  • Jeff Th. M. De Hosson
  • E. Ramous
Surface Engineering


TiB/Ti-6Al-4V metal-matrix composite (MMC) layers were produced on Ti-6Al-4V substrates by laser cladding. A TiB2/Ti powder mixture was used as a precursor to obtain a dispersion of TiB needles in the Ti alloy matrix, with the aid of an exothermic reaction between TiB2 and Ti. A eutectic microstructure was obtained that consisted of an extremely homogeneous dispersion of TiB eutectic needles in the Ti alloy matrix, having a volume fraction as high as 0.33. Also, an equilibrium-like microstructure was found, consisting of a dispersion of both primary and eutectic TiB needles inside the Ti alloy matrix. An analysis of the geometry of the layers was performed and proved successful in determining the percentage of B. Further, it correctly predicted the variation of atomic B content as a function of laser power. The relative wear resistance coefficient, defined as the wear coefficient of the uncoated matrix divided by that of coating, shows an improvement by a factor as high as 1500 for the eutectic microstructure.


laser processing microstructure TiB coatings wear properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Boyer: Material Properties Handbook: Titanium Alloys, ASM, Pittsburgh, PA, 1994.Google Scholar
  2. 2.
    Y.T. Pei, V. Ocelik, and J.Th.M. De Hosson: Acta Mater., 2002, 50, p. 2035.CrossRefGoogle Scholar
  3. 3.
    J.A. Vreeling, V. Ocelik, and J.Th.M. De Hosson: Acta Mater., 2002, 50, p. 4913.CrossRefGoogle Scholar
  4. 4.
    J.Th.M. De Hosson and B.J. Kooi: in Handbook of Surfaces and Interfaces in Materials, H.S. Nalwa, ed. Academic Press, NY, 2001, Vol. 1, Chap.1, pp. 1–114.Google Scholar
  5. 5.
    E. Zhang, S. Zeng, and B. Wang, J. Mater. Proc. Technol., 2002, 125–126, pp. 103–09.CrossRefGoogle Scholar
  6. 6.
    K.S. Ravi Chandran and K.B. Panda: Adv. Mater. Proc., NY, 2002, pp. 59–62.Google Scholar
  7. 7.
    J.C. Oh, D.-K. Choo, and S. Lee: Surf Coat. Technol., 2000, 127, pp. 76–85.CrossRefGoogle Scholar
  8. 8.
    R. Banerjee, P.C. Collins, and H.L. Fraser: Adv. Eng. Mater., 2002, 4, pp. 847–51.CrossRefGoogle Scholar
  9. 9.
    S. Aich and K.S. Ravi Chandran: Metall. Mater. Trans. A, 2002, 33A, pp. 3489–98.CrossRefGoogle Scholar
  10. 10.
    X. Zhang, W. Lu, D. Zhang, and R. Wu: Scripta Mater., 1999, 41, pp. 39–46.CrossRefGoogle Scholar
  11. 11.
    S.C. Tjong and Z.Y. Ma: Mater. Sci. Eng. R, 2000, 29, pp. 49–113.CrossRefGoogle Scholar
  12. 12.
    J.A. Vreeling, V. Ocelik, Y.T. Pei, D.T.L. van Agterveld, and J.Th.M. de Hosson: Acta Mater., 2000, 48, pp. 4225–33.CrossRefGoogle Scholar
  13. 13.
    W.C. Oliver and G.M. Pharr: J. Mater. Res., 1992, 7, p. 1564.Google Scholar
  14. 14.
    I. Barin and O. Knacke, Thermodynamical Properties of Inorganic Substances, Springer-Verlag, Berlin, Germany, 1973.Google Scholar
  15. 15.
    Y.P. Lei, H. Murakawa, Y.W. Shi, and X.Y. Li: Comp. Mater. Sci., 2001, 21, pp. 276–90.CrossRefGoogle Scholar
  16. 16.
    R.R. Atri, K.S. Ravichandran, and S.K. Jha: Mater. Sci. Eng. A, 1999, 271, pp. 150–59.CrossRefGoogle Scholar
  17. 17.
    S. Gorsse, Y. Le Petitcorps, S. Matar, and F. Rebillat: Mater. Sci. Eng. A, 2003, 340, pp. 80–87.CrossRefGoogle Scholar
  18. 18.
    D. Hull, An Introduction to Composite Materials, Cambridge University Press, Cambridge, UK, 1981.Google Scholar
  19. 19.
    H.S. Kim, Mater. Sci. Eng. A, 2000, 289, pp. 30–33.CrossRefGoogle Scholar
  20. 20.
    I.M. Hutching, S. Wilson, and A.T. Alpas, in Comprehensive Composite Materials, Vol. 3.19, C. Zweben and A. Kelly, ed., Elsevier, Amsterdam, The Netherlands, 2003.Google Scholar
  21. 21.
    H. Biloni and W.J. Boettinger, Physical Metallurgy, North Holland, Amsterdam, The Netherlands, 1996, pp. 765–67.Google Scholar
  22. 22.
    W. Kurz and D.J. Fischer, Fundamentals of Solidification, Trans Tech Publications LTD, Switzerland, 1986, pp. 97–117.Google Scholar
  23. 23.
    B.J. Kooi, Y.T. Pei, and J.Th.M. De Hosson, Acta Mater., 2003, 51, pp. 831–45.CrossRefGoogle Scholar

Copyright information

© ASM International 2004

Authors and Affiliations

  • D. Galvan
    • 1
  • V. Ocelík
    • 1
  • Y. Pei
    • 1
  • B. J. Kooi
    • 1
  • Jeff Th. M. De Hosson
    • 1
  • E. Ramous
    • 2
  1. 1.Department of Applied PhysicsMaterials Science Center and the Netherlands Institute for Metals ResearchAg GroningenThe Netherlands
  2. 2.DIMEG, Università di PadovaPadovaItaly

Personalised recommendations