Skip to main content
Log in

Main features of designing with brittle materials

  • Testing and Evaluation
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Brittle material behavior and mode of failure are contrasted with those characteristics of ductile materials. The stochastic nature of brittle fracture, which results from the random occurrence of fracture-initiating microstructural imperfections, necessitates a probabilistic fracture mechanics approach to design with brittle materials. It is also clearly shown which main properties of brittle materials have to be optimized to improve the reliability of mechanically loaded components made of brittle materials. Important features of designing with brittle materials are elucidated and illustrated by an exemplary design calculation of a ceramic disc spring. It is shown how even environmentally induced subcritical crack growth, characteristic of ceramic materials, can be adequately accounted for in the assessment of reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.D. Quinn: “Strength and Proof Testing” in Engineered Materials Handbook, Vol. 4: Ceramics and Glasses, S.J. Schneider, ed., ASM International, Materials Park, OH, 1991, pp. 585–98.

    Google Scholar 

  2. J.B. Wachtman: Mechanical Properties of Ceramics, John Wiley & Sons, New York, NY, 1996.

    Google Scholar 

  3. R.O. Ritchie and R.H. Dauskardt: “Fracture in Ceramics, Cyclic” in The Encyclopedia of Advanced Materials, D. Bloor et al., ed., Elsevier Science, Oxford, UK, 1994, pp. 791–98.

    Google Scholar 

  4. C. Gandhi and M.F. Ashby: “Fracture-Mechanism Maps for Materials Which Cleave: F.C.C., B.C.C. and H.C.P. Metals and Ceramics,” Acta Metall., 1979, 27, pp. 1565–1602.

    Article  CAS  Google Scholar 

  5. R. Danzer: “Subcritical Crack Growth in Ceramics,” in The Encyclopedia of Advanced Materials, D. Bloor et al., ed., Elsevier Science, Oxford, UK, 1994, pp. 2693–98.

    Google Scholar 

  6. J.E. Ritter: “Crack Propagation in Ceramics” in Engineered Materials Handbook, Vol. 4: Ceramics and Glasses, S.J. Schneider, ed., ASM International, Materials Park, OH, 1991, pp. 694–99.

    Google Scholar 

  7. S.M. Wiederhorn, “Subcritical Crack Growth in Ceramics” in Encyclopedia of Materials Science and Engineering, M.B. Bever, ed., Pergamon Press, Oxford, UK, 1986, pp. 4714–20.

    Google Scholar 

  8. R. Danzer: “A General Strength Distribution Function for Brittle Materials,” J. Eur. Ceram. Soc., 1992, 10, pp. 461–72.

    Article  Google Scholar 

  9. W. Weibull: “A Statistical Theory of the Strength of Materials,” Ingeniörsvetenskapsakademiens Handlingar, Nr. 151, Stockholm, Sweden, 1939.

  10. W. Weibull: “A Statistical Distribution Function of Wide Applicability,” J. Appl. Mech., 1951, 18, pp. 293–97.

    Google Scholar 

  11. A.M. Freudenthal: “Statistical Approach to Brittle Fracture” in Fracture: An Advanced Treatise, Vol. II: Mathematical Fundamentals, H. Liebowitz, ed., Academic Press, New York, NY, 1968, pp. 591–619.

    Google Scholar 

  12. W.E.C. Creyke, I.E.J. Sainsbury, and R. Morrell: Design with Non-Ductile Materials, Applied Science Publishers, Barking, UK, 1982.

    Google Scholar 

  13. S.B. Batdorf: “Fracture: Statistical Theories” in Encyclopedia of Materials Science and Engineering, M.B. Bever, ed., Pergamon Press, Oxford, UK, 1986, pp. 1858–64.

    Google Scholar 

  14. T. Thiemeier: “Lebensdauervorhersage für keramische Bauteile unter mehrachsiger Beanspruchung,” Ph.D. Thesis, Universität Karlsruhe, Fakultät für Maschinenbau, 1989 (in German).

  15. S. Krüger: “Ein Beitrag zur praxisgerechten Dimensionierung keramischer Bauteile bei mehrachsigen Beanspruchungen,” Ph.D. Thesis, Technische Universität Clausthal, 1999 (in German).

  16. R. Morrell: Handbook of Properties of Technical & Engineering Ceramics, Part 1: An Introduction for the Engineer and Designer, Her Majesty’s Stationery Office, London, 1989.

    Google Scholar 

  17. Y. Hamano: “Progress in Structural Applications of Silicon Nitride” in Silicon-Based Structural Ceramics, B.W. Sheldon and S.C. Danforth, ed., American Ceramic Society, Westerville, OH, 1994, pp. 3–14.

    Google Scholar 

  18. K.D. Mörgenthaler: “Ceramic Valves-A Challenge?” in Ceramic Materials and Components for Engines, K. Niihara et al., ed., Japan Fine Ceramic Association, Tokyo, 1998, pp. 46–51.

    Google Scholar 

  19. M.J. Hoffmann and G. Petzow, ed.: Tailoring of Mechanical Properties of Si 3N4 Ceramics, Kluwer Academic Publishers, Dordrect, Holland, 1994.

    Google Scholar 

  20. H. Hempel and H. Wiest: “Structural Analysis and Life Prediction for Ceramic Gas Turbine Components for the Mercedes-Benz Research Car 2000,” ASME Paper No. 86-GT-199, ASME International, 1986.

  21. G.D. Quinn and J.B. Quinn: “Slow Crack Growth in Hot-Pressed Silicon Nitride” in Fracture Mechanics of Ceramics, A.G. Evans et al., ed., Plenum Press, New York/London, 1993, pp. 603–36.

    Google Scholar 

  22. G.D. Quinn and R. Gettings: “Standard Reference Material 2001: Ceramic Fracture Toughness,” Ceram. Eng. Sci. Proc., 20, 1999, pp. 513–23.

    Article  Google Scholar 

  23. S.R. Choi, L.M. Powers, F.A. Holland, and J.P. Gyekenyesi: “Creep of Silicon Nitride Under Various Specimen/Loading Configurations” in Ceramic Materials and Components for Engines, J.G. Heinrich and F. Aldinger, ed., Wiley-VCH, Weinheim, Germany, 2001, pp. 291–98.

    Chapter  Google Scholar 

  24. R. Morrell: Handbook of Properties of Technical & Engineering Ceramics, Part 2: DataReviews, Sect. 1: High Aluminia Ceramics, Her Majesty’s Stationery Office, London, UK, 1987.

    Google Scholar 

  25. M. Matsui: “The Reliability Evaluation of Structural Ceramics,” FC Annual Report for Overseas Readers, Vol. 20, Japan Fine Ceramics Assoc., Tokyo, Japan, 1989, pp. 20–26.

    Google Scholar 

  26. T. Lube and R. Danzer: “An ESIS Testing Program for a Silicon Nitride Reference Material” in Fracture Mechanics Beyond 2000, K. Golos, D. Kocanda, and A. Neimitz, ed., Engineering Materials Advisory Service, Sheffield, UK, 2002, pp. 401–08.

    Google Scholar 

  27. T. Lube, R. Danzer, J. Dusza, and J. Kübler: “Strength and Fracture Toughness of the ESIS Silicon Nitride Reference Material” in Fracture Mechanics Beyond 2000, K. Golos, D. Kocanda, and A. Neimitz, ed., Engineering Materials Advisory Service, Sheffield, UK, 2002, pp. 409–16.

    Google Scholar 

  28. G. Roeben, J.-P. Erauw, T. Lube, R.G. Duan, F. Cambier, and O. van der Biest: “Microstructure Characteristics Related to the High Temperature Fracture Resistance of the ESIS Silicon Nitride Reference Material” in Fracture Mechanics Beyond 2000, K. Golos, D. Kocanda, and A. Neimitz, ed., Engineering Materials Advisory Service, Sheffield, UK, 2002, pp. 77–84.

    Google Scholar 

  29. T. Hirano, K. Niihara, and T. Ohji: “Effects of Matrix Grain Size on the Mechanical Properties of Si3N4/SiC Nanocomposites Densified With Y2O3,” Mater. Lett., 1996, 27(1–2), pp. 53–68.

    Article  CAS  Google Scholar 

  30. W. Hübner: “Deformationen und Spannungen bei Tellerfedern,” Konstruktion, 1982, 34, pp. 387–92 (in German).

    Google Scholar 

  31. F. Dubois: “Über die Festigkeit der Kegelschale,” Ph.D. Thesis, ETH Zürich, Switzerland, 1917 (in German).

    Google Scholar 

  32. R.W. Davidge: Mechanical Behaviour of Ceramics, Cambridge University Press, Cambridge, UK, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubeša, D., Smoljan, B. & Danzer, R. Main features of designing with brittle materials. J. of Materi Eng and Perform 12, 220–228 (2003). https://doi.org/10.1361/105994903770343385

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105994903770343385

Keywords

Navigation