Main features of designing with brittle materials

  • D. Rubeša
  • B. Smoljan
  • R. Danzer
Testing and Evaluation

Abstract

Brittle material behavior and mode of failure are contrasted with those characteristics of ductile materials. The stochastic nature of brittle fracture, which results from the random occurrence of fracture-initiating microstructural imperfections, necessitates a probabilistic fracture mechanics approach to design with brittle materials. It is also clearly shown which main properties of brittle materials have to be optimized to improve the reliability of mechanically loaded components made of brittle materials. Important features of designing with brittle materials are elucidated and illustrated by an exemplary design calculation of a ceramic disc spring. It is shown how even environmentally induced subcritical crack growth, characteristic of ceramic materials, can be adequately accounted for in the assessment of reliability.

Keywords

brittle material ceramics designing with brittle material probabilistic fracture mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.D. Quinn: “Strength and Proof Testing” in Engineered Materials Handbook, Vol. 4: Ceramics and Glasses, S.J. Schneider, ed., ASM International, Materials Park, OH, 1991, pp. 585–98.Google Scholar
  2. 2.
    J.B. Wachtman: Mechanical Properties of Ceramics, John Wiley & Sons, New York, NY, 1996.Google Scholar
  3. 3.
    R.O. Ritchie and R.H. Dauskardt: “Fracture in Ceramics, Cyclic” in The Encyclopedia of Advanced Materials, D. Bloor et al., ed., Elsevier Science, Oxford, UK, 1994, pp. 791–98.Google Scholar
  4. 4.
    C. Gandhi and M.F. Ashby: “Fracture-Mechanism Maps for Materials Which Cleave: F.C.C., B.C.C. and H.C.P. Metals and Ceramics,” Acta Metall., 1979, 27, pp. 1565–1602.CrossRefGoogle Scholar
  5. 5.
    R. Danzer: “Subcritical Crack Growth in Ceramics,” in The Encyclopedia of Advanced Materials, D. Bloor et al., ed., Elsevier Science, Oxford, UK, 1994, pp. 2693–98.Google Scholar
  6. 6.
    J.E. Ritter: “Crack Propagation in Ceramics” in Engineered Materials Handbook, Vol. 4: Ceramics and Glasses, S.J. Schneider, ed., ASM International, Materials Park, OH, 1991, pp. 694–99.Google Scholar
  7. 7.
    S.M. Wiederhorn, “Subcritical Crack Growth in Ceramics” in Encyclopedia of Materials Science and Engineering, M.B. Bever, ed., Pergamon Press, Oxford, UK, 1986, pp. 4714–20.Google Scholar
  8. 8.
    R. Danzer: “A General Strength Distribution Function for Brittle Materials,” J. Eur. Ceram. Soc., 1992, 10, pp. 461–72.CrossRefGoogle Scholar
  9. 9.
    W. Weibull: “A Statistical Theory of the Strength of Materials,” Ingeniörsvetenskapsakademiens Handlingar, Nr. 151, Stockholm, Sweden, 1939.Google Scholar
  10. 10.
    W. Weibull: “A Statistical Distribution Function of Wide Applicability,” J. Appl. Mech., 1951, 18, pp. 293–97.Google Scholar
  11. 11.
    A.M. Freudenthal: “Statistical Approach to Brittle Fracture” in Fracture: An Advanced Treatise, Vol. II: Mathematical Fundamentals, H. Liebowitz, ed., Academic Press, New York, NY, 1968, pp. 591–619.Google Scholar
  12. 12.
    W.E.C. Creyke, I.E.J. Sainsbury, and R. Morrell: Design with Non-Ductile Materials, Applied Science Publishers, Barking, UK, 1982.Google Scholar
  13. 13.
    S.B. Batdorf: “Fracture: Statistical Theories” in Encyclopedia of Materials Science and Engineering, M.B. Bever, ed., Pergamon Press, Oxford, UK, 1986, pp. 1858–64.Google Scholar
  14. 14.
    T. Thiemeier: “Lebensdauervorhersage für keramische Bauteile unter mehrachsiger Beanspruchung,” Ph.D. Thesis, Universität Karlsruhe, Fakultät für Maschinenbau, 1989 (in German).Google Scholar
  15. 15.
    S. Krüger: “Ein Beitrag zur praxisgerechten Dimensionierung keramischer Bauteile bei mehrachsigen Beanspruchungen,” Ph.D. Thesis, Technische Universität Clausthal, 1999 (in German).Google Scholar
  16. 16.
    R. Morrell: Handbook of Properties of Technical & Engineering Ceramics, Part 1: An Introduction for the Engineer and Designer, Her Majesty’s Stationery Office, London, 1989.Google Scholar
  17. 17.
    Y. Hamano: “Progress in Structural Applications of Silicon Nitride” in Silicon-Based Structural Ceramics, B.W. Sheldon and S.C. Danforth, ed., American Ceramic Society, Westerville, OH, 1994, pp. 3–14.Google Scholar
  18. 18.
    K.D. Mörgenthaler: “Ceramic Valves-A Challenge?” in Ceramic Materials and Components for Engines, K. Niihara et al., ed., Japan Fine Ceramic Association, Tokyo, 1998, pp. 46–51.Google Scholar
  19. 19.
    M.J. Hoffmann and G. Petzow, ed.: Tailoring of Mechanical Properties of Si 3N4 Ceramics, Kluwer Academic Publishers, Dordrect, Holland, 1994.Google Scholar
  20. 20.
    H. Hempel and H. Wiest: “Structural Analysis and Life Prediction for Ceramic Gas Turbine Components for the Mercedes-Benz Research Car 2000,” ASME Paper No. 86-GT-199, ASME International, 1986.Google Scholar
  21. 21.
    G.D. Quinn and J.B. Quinn: “Slow Crack Growth in Hot-Pressed Silicon Nitride” in Fracture Mechanics of Ceramics, A.G. Evans et al., ed., Plenum Press, New York/London, 1993, pp. 603–36.Google Scholar
  22. 22.
    G.D. Quinn and R. Gettings: “Standard Reference Material 2001: Ceramic Fracture Toughness,” Ceram. Eng. Sci. Proc., 20, 1999, pp. 513–23.CrossRefGoogle Scholar
  23. 23.
    S.R. Choi, L.M. Powers, F.A. Holland, and J.P. Gyekenyesi: “Creep of Silicon Nitride Under Various Specimen/Loading Configurations” in Ceramic Materials and Components for Engines, J.G. Heinrich and F. Aldinger, ed., Wiley-VCH, Weinheim, Germany, 2001, pp. 291–98.Google Scholar
  24. 24.
    R. Morrell: Handbook of Properties of Technical & Engineering Ceramics, Part 2: DataReviews, Sect. 1: High Aluminia Ceramics, Her Majesty’s Stationery Office, London, UK, 1987.Google Scholar
  25. 25.
    M. Matsui: “The Reliability Evaluation of Structural Ceramics,” FC Annual Report for Overseas Readers, Vol. 20, Japan Fine Ceramics Assoc., Tokyo, Japan, 1989, pp. 20–26.Google Scholar
  26. 26.
    T. Lube and R. Danzer: “An ESIS Testing Program for a Silicon Nitride Reference Material” in Fracture Mechanics Beyond 2000, K. Golos, D. Kocanda, and A. Neimitz, ed., Engineering Materials Advisory Service, Sheffield, UK, 2002, pp. 401–08.Google Scholar
  27. 27.
    T. Lube, R. Danzer, J. Dusza, and J. Kübler: “Strength and Fracture Toughness of the ESIS Silicon Nitride Reference Material” in Fracture Mechanics Beyond 2000, K. Golos, D. Kocanda, and A. Neimitz, ed., Engineering Materials Advisory Service, Sheffield, UK, 2002, pp. 409–16.Google Scholar
  28. 28.
    G. Roeben, J.-P. Erauw, T. Lube, R.G. Duan, F. Cambier, and O. van der Biest: “Microstructure Characteristics Related to the High Temperature Fracture Resistance of the ESIS Silicon Nitride Reference Material” in Fracture Mechanics Beyond 2000, K. Golos, D. Kocanda, and A. Neimitz, ed., Engineering Materials Advisory Service, Sheffield, UK, 2002, pp. 77–84.Google Scholar
  29. 29.
    T. Hirano, K. Niihara, and T. Ohji: “Effects of Matrix Grain Size on the Mechanical Properties of Si3N4/SiC Nanocomposites Densified With Y2O3,” Mater. Lett., 1996, 27(1–2), pp. 53–68.CrossRefGoogle Scholar
  30. 30.
    W. Hübner: “Deformationen und Spannungen bei Tellerfedern,” Konstruktion, 1982, 34, pp. 387–92 (in German).Google Scholar
  31. 31.
    F. Dubois: “Über die Festigkeit der Kegelschale,” Ph.D. Thesis, ETH Zürich, Switzerland, 1917 (in German).Google Scholar
  32. 32.
    R.W. Davidge: Mechanical Behaviour of Ceramics, Cambridge University Press, Cambridge, UK, 1979.Google Scholar

Copyright information

© ASM International 2003

Authors and Affiliations

  • D. Rubeša
    • 1
  • B. Smoljan
    • 2
  • R. Danzer
    • 3
  1. 1.Dept. of Automotive EngineeringUniversity of Applied Sciences (FH Joanneum)GrazAustria
  2. 2.Faculty of EngineeringUniversity of RijekaRijekaCroatia
  3. 3.Dept. of Structural and Functional CeramicsUniversity of LeobenLeobenAustria

Personalised recommendations