Investigation of fatigue crack initiation in Ti-6Al-4V during tensile-tensile fatigue

  • Svetlana G. Ivanova
  • Ronald R. Biederman
  • Richard D. SissonJr.


Fatigue crack initiation in Ti-6Al-4V has been investigated in high cycle fatigue (HCF) and low cycle fatigue (LCF) regimes at stress ratio R=0.1 using the replication technique. In all four tested α/β microstructures, the crack was initiated by fracture of equiaxed alpha grain. Fractured alpha grains are seen on the fracture surface as flat facets with features characteristics of cleavage fracture. In the regime of low stress amplitudes and in the absence of reverse loading, cleavage fracture contributes to crack initiation and early stages of crack growth in Ti-6Al-4V. This mechanism is discussed in relation to the anomalous mean stress fatigue behavior exhibited by this alloy.


fatigue crack initiation fatigue of Ti-6Al-4V mean stress effects microstructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.L. Dowson, C.J. Beevers, and L. Grabowski: “The Microstructural Features Associated with the Growth of Short Fatigue Cracks in a Near-Alpha Ti Alloy” in Titanium ’92, Science and Technology, F.H. Froes and I. Caplan, ed., TMS, Warrendale, PA, 1993, pp. 1741–48.Google Scholar
  2. 2.
    R.J. Wanhill and H. Doker: “Vacuum Fatigue Fracture of Ti-6Al-4V,” in Proceedings of Third International Conference on Titanium, Plenum Press, New York, NY, 1982, pp. 799–810.Google Scholar
  3. 3.
    P.E. Irving and C.J. Beevers: “Microstructural Influences on Fatigue Crack Growth in Ti-6Al-4V,” Mater. Sci. Eng., 1974, 14, pp. 229–38.CrossRefGoogle Scholar
  4. 4.
    K. Sadananda: “A Dislocation Model for Faceted Mode of Fatigue Crack Growth” in Dislocation Modeling of Physical Systems, M.F. Ashby, R. Bullough, C.S. Hartley, and J.P. Hirth, ed., Pergamon Press, New York, NY, 1981, pp. 69–73.Google Scholar
  5. 5.
    D.A. Meyn: “Analysis of Frequency and Amplitude Effects on Corrosion Fatigue Crack Propagation in Ti-8Al-1Mo-1V” Metall. Trans., 1971, 2, p. 853.CrossRefGoogle Scholar
  6. 6.
    D.F. Neal and P.A. Blenkinsop: “Internal Fatigue Origins in α-β Titanium Alloys,” Acta Metall., 1976, 24, pp. 59–63.CrossRefGoogle Scholar
  7. 7.
    A.N. Stroh: “Theory of the Fracture of Metals,” Adv. Phys., 1957, 6, p. 418.Google Scholar
  8. 8.
    A.M. Freudenthal: “New Aspects of Fatigue and Fracture Mechanics,” Eng. Fract. Mech., 1974, 8(6), pp. 775–93.CrossRefGoogle Scholar
  9. 9.
    R.K. Steele and A.J. McEvily: “The High-Cycle Fatigue Behavior of Ti-6Al-4V Alloy,” Eng. Fract. Mech., 1976, 8(1), pp. 31–37.CrossRefGoogle Scholar
  10. 10.
    S. Adachi, L. Wagner, and G. Lütjering: “Influence of Mean Stress on Fatigue Strength of Ti-6Al-4V” in Proceedings 7th International Conference on Strength of Metals and Alloys, H.L. McQueen, J.P. Bailon, and J.I. Dickson, ed., Pergamon Press, New York, NY, 1986, p. 2117.Google Scholar
  11. 11.
    S. Adachi: Mean Stress Dependence of Fatigue Strength in Titanium Alloys, Ph.D. Thesis, Technischen Universitat Hamburg-Harburg, Germany, 1987.Google Scholar
  12. 12.
    S.G. Ivanova, F.S. Cohen, R.R. Biederman, and R.D. Sisson Jr.: “Role of Microstructure in the Mean Stress Dependence of Fatigue Strength in Ti-6Al-4V Alloy” in Fatigue Behavior of Titanium Alloys, R.R. Boyer, D. Eylon, and G. Lütjering, ed., TMS, Warrendale, PA, 1999, pp. 39–46.Google Scholar
  13. 13.
    R.I. Jaffe and G. Lütjering: “Effect of Microstructure and Loading Condition on Fatigue of Ti-6Al-4V Alloy” in Microstructure, Fracture Toughness and Fatigue Crack Growth Rate in Titanium Alloys, A.K. Chakrabarty and J.C. Chesnutt, ed., AIME, Warrendale, PA, 1987, p. 193.Google Scholar
  14. 14.
    G. Henry: Fractography and Microfractography, Vol. 5, Verlag Stahleisen, Dusseldorf, Germany, p. 445.Google Scholar

Copyright information

© ASM International 2002

Authors and Affiliations

  • Svetlana G. Ivanova
    • 1
  • Ronald R. Biederman
    • 1
  • Richard D. SissonJr.
    • 1
  1. 1.Materials Science and Engineering Program, Mechanical Engineering DepartmentWorcester Polytechnic InstituteWorcesterU.S.A.

Personalised recommendations