Skip to main content
Log in

A study of mechanical properties and fractography of ZA-27/titanium-dioxide metal matrix composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper reports an investigation of the mechanical properties and the fracture mechanism of ZA-27 alloy composites containing titanium-dioxide (TiO2) particles 30–50 µm in size and in contents ranging from 0–6 wt.% in steps of 2 wt.%. The composites were fabricated by the compocasting technique. The results of the study revealed improvements in mechanical properties such as Young’s modulus, ultimate tensile strength, yield strength and hardness of the composites, but at the cost of ductility. The fracture behavior of the composites was influenced significantly by the presence of titanium dioxide particles. Crack propagation through the matrix and the reinforcing particles resulted in the final fracture. Scanning electron micrscopy (SEM) analyses were carried out to furnish suitable explanations for the observed phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia: “Particulate Reinforced Metal Matrix Composites—A Review,” J. Mater. Sci., 1991, 26, p. 1137.

    Article  CAS  Google Scholar 

  2. D. Nath and P.K. Rohatgi: “Fluidity of Mica Particles Dispersed Aluminum Alloys,” J. Mater. Sci., 1990, 15, pp. 2777–84.

    Google Scholar 

  3. S.H.J. Lo, S. Dionne, M. Sahoo, and M.N. Hawthrone: “Mechanical and Tribological Properties of Zinc-Aluminum Metal Matrix Composites,” J. Mater. Sci., 1992, 27, p. 5681.

    Article  CAS  Google Scholar 

  4. W. Smith: Structures and Properties of Engineering Alloys, 2nd ed., McGraw Hill, New York, NY, 1993, p. 561.

    Google Scholar 

  5. P.P. Lee, T. Savaskan, and E. Laufer: “Wear Resistance and Microstructure of Zn-Al-Si and Zn-Al-Cu Alloys,” Wear, 1987, 117, p. 79.

    Article  CAS  Google Scholar 

  6. H.X. Zhu and S.K. Liu, “Mechanical Properties of Squeeze Cast Zinc Alloy Matrix Composites Containing Alph-Alumina Fibers,” Composites, 1993, 24(6), pp. 437–43.

    Article  CAS  Google Scholar 

  7. S. Biswas, E. Dwarakadasa, and S.K. Biswas: in Proc. of All India Seminar on Aluminum, E.S. Dwaragadoss et al., ed., International Conference, Bangalore, 1979, p. 731.

  8. H.J. Lo, S. Dionne, M. Sahoo, and M.N. Hawthorne: “Mechanical and Tribological Properties of Zinc Aluminum Metal Matrix Composites,” J. Mater. Sci., 1992, 27, pp. 5681–91.

    Article  CAS  Google Scholar 

  9. T.S. Srivastan: “Microstructure, Tensile Properties and Fracture Behavior of A1203 Particulate Reinforced Aluminum Alloy Metal Matrix Composites,” J. Mater. Sci. 1996, 31, pp. 1375–88.

    Article  Google Scholar 

  10. D.L. McDaneals: “Analysis of Stress-Strain, Fracture, and Ductility Behavior of Aluminum Matrix Composites Containing Discontinuities Silicon Carbide Reinforcement,” Metall. Trans., 1985, 16A, pp. 1105–14.

    Article  Google Scholar 

  11. M.A. Dellis, J.P. Keurstermans, F. Delannay, and J. Wergia: “Zn-Al Matrix Composites, Investigations of the Thermal Expansion, Creep Resistance and Fracture Toughness,” Mater. Sci. Eng., 2001, A135, pp. 253–57.

    Google Scholar 

  12. P.M. Mummery and B. Derby, “The Influence of Microstructure on the Fracture Behavior of Particulate Metal Matrix Composites,” Mater. Sci. Eng., 1991, A135, pp. 221–24.

    Article  CAS  Google Scholar 

  13. A.P. Divecha, S.G. Fishman, and S.D. Karmakar, “SiC Reinforced Aluminum-A Formable Composite,” J. Met., 1981, 12, pp. 12–20.

    Google Scholar 

  14. W.H. Hunt, D. Richmond, R.D. Young, F.L. Mathews, “Mechanical Properties of Squeeze Cast Zinc Alloy MMC’s” in Proc. of 6th Int. Conf. on Composite Materials, M.L. Mathew, ed., Elsevier Applied Science, London, United Kingdom, 1987, pp. 2209–18.

    Google Scholar 

  15. K.S. Chan: “Fracture Mechanism and Properties of Metal Matrix Composites” in Key Engineering Materials, G.M. Newaz, H. Neber-Asehbacher, and F.H. Wohlbier, ed., Trans Tech Publication, Aedermansdorf, Switzerland, 1995, Vol. 104, pp. 791–98.

    Google Scholar 

  16. W.W. Gerberich: “Microstructure and Fracture,” ASM Handbook on Mechanical Testing, 1995, 8, pp. 476–92.

    Google Scholar 

  17. V.V. Bhanuprasad, M.A. Staley, P. Ramakrishnan, and Y.R. Mahajan: “Fractography of SiC Particulate Reinforced Aluminum Metal Matrix Composites” in Key Engineering Materials, G.M. Newaz, H. Neber-Aesehbacher, and F.H. Wohlbier, ed., Trans Tech Publication, Aedermansdorf, Switzerland, 1995, 104, pp. 495–506.

    Google Scholar 

  18. Y. Torisaka and S. Kojima: “Superplasticity and Internal Friction of a Superplastic Zn-22%Al Eutectiod Alloy,” Acta Metall. Mater. 1991, 39(5), pp. 947–54.

    Article  CAS  Google Scholar 

  19. N.V. Ravi Kumar and E.S. Dwarakadasa: “Effect of Matrix Strength on the Mechanical Properties of Al-Zn-Mg/SiCp Composites,” Composites Part A, 2001, 31, pp. 1139–45.

    Article  Google Scholar 

  20. Y. Chen and M. Tu: “Dimension Shrinkage of Supersaturated ZA27Cu1 and ZA27Cu2 Alloy,” Mater. Sci. Technol., 1998, 14, pp. 473–76.

    Article  Google Scholar 

  21. T. Savaskan and S. Murphy: “Decomposition of Zn-Al Alloy on Quench-Aging,” Mater. Sci. Technol., 1990, 6, pp. 695–703.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranganath, G., Sharma, S.C., Krishna, M. et al. A study of mechanical properties and fractography of ZA-27/titanium-dioxide metal matrix composites. J. of Materi Eng and Perform 11, 408–413 (2002). https://doi.org/10.1361/105994902770343935

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105994902770343935

Keywords

Navigation