A study of mechanical properties and fractography of ZA-27/titanium-dioxide metal matrix composites

  • G. Ranganath
  • S. C. Sharma
  • M. Krishna
  • M. S. Muruli


This paper reports an investigation of the mechanical properties and the fracture mechanism of ZA-27 alloy composites containing titanium-dioxide (TiO2) particles 30–50 µm in size and in contents ranging from 0–6 wt.% in steps of 2 wt.%. The composites were fabricated by the compocasting technique. The results of the study revealed improvements in mechanical properties such as Young’s modulus, ultimate tensile strength, yield strength and hardness of the composites, but at the cost of ductility. The fracture behavior of the composites was influenced significantly by the presence of titanium dioxide particles. Crack propagation through the matrix and the reinforcing particles resulted in the final fracture. Scanning electron micrscopy (SEM) analyses were carried out to furnish suitable explanations for the observed phenomena.


fractography mechanical properties titanium dioxide ZA-27 alloy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia: “Particulate Reinforced Metal Matrix Composites—A Review,” J. Mater. Sci., 1991, 26, p. 1137.CrossRefGoogle Scholar
  2. 2.
    D. Nath and P.K. Rohatgi: “Fluidity of Mica Particles Dispersed Aluminum Alloys,” J. Mater. Sci., 1990, 15, pp. 2777–84.Google Scholar
  3. 3.
    S.H.J. Lo, S. Dionne, M. Sahoo, and M.N. Hawthrone: “Mechanical and Tribological Properties of Zinc-Aluminum Metal Matrix Composites,” J. Mater. Sci., 1992, 27, p. 5681.CrossRefGoogle Scholar
  4. 4.
    W. Smith: Structures and Properties of Engineering Alloys, 2nd ed., McGraw Hill, New York, NY, 1993, p. 561.Google Scholar
  5. 5.
    P.P. Lee, T. Savaskan, and E. Laufer: “Wear Resistance and Microstructure of Zn-Al-Si and Zn-Al-Cu Alloys,” Wear, 1987, 117, p. 79.CrossRefGoogle Scholar
  6. 6.
    H.X. Zhu and S.K. Liu, “Mechanical Properties of Squeeze Cast Zinc Alloy Matrix Composites Containing Alph-Alumina Fibers,” Composites, 1993, 24(6), pp. 437–43.CrossRefGoogle Scholar
  7. 7.
    S. Biswas, E. Dwarakadasa, and S.K. Biswas: in Proc. of All India Seminar on Aluminum, E.S. Dwaragadoss et al., ed., International Conference, Bangalore, 1979, p. 731.Google Scholar
  8. 8.
    H.J. Lo, S. Dionne, M. Sahoo, and M.N. Hawthorne: “Mechanical and Tribological Properties of Zinc Aluminum Metal Matrix Composites,” J. Mater. Sci., 1992, 27, pp. 5681–91.CrossRefGoogle Scholar
  9. 9.
    T.S. Srivastan: “Microstructure, Tensile Properties and Fracture Behavior of A1203 Particulate Reinforced Aluminum Alloy Metal Matrix Composites,” J. Mater. Sci. 1996, 31, pp. 1375–88.CrossRefGoogle Scholar
  10. 10.
    D.L. McDaneals: “Analysis of Stress-Strain, Fracture, and Ductility Behavior of Aluminum Matrix Composites Containing Discontinuities Silicon Carbide Reinforcement,” Metall. Trans., 1985, 16A, pp. 1105–14.Google Scholar
  11. 11.
    M.A. Dellis, J.P. Keurstermans, F. Delannay, and J. Wergia: “Zn-Al Matrix Composites, Investigations of the Thermal Expansion, Creep Resistance and Fracture Toughness,” Mater. Sci. Eng., 2001, A135, pp. 253–57.Google Scholar
  12. 12.
    P.M. Mummery and B. Derby, “The Influence of Microstructure on the Fracture Behavior of Particulate Metal Matrix Composites,” Mater. Sci. Eng., 1991, A135, pp. 221–24.Google Scholar
  13. 13.
    A.P. Divecha, S.G. Fishman, and S.D. Karmakar, “SiC Reinforced Aluminum-A Formable Composite,” J. Met., 1981, 12, pp. 12–20.Google Scholar
  14. 14.
    W.H. Hunt, D. Richmond, R.D. Young, F.L. Mathews, “Mechanical Properties of Squeeze Cast Zinc Alloy MMC’s” in Proc. of 6th Int. Conf. on Composite Materials, M.L. Mathew, ed., Elsevier Applied Science, London, United Kingdom, 1987, pp. 2209–18.Google Scholar
  15. 15.
    K.S. Chan: “Fracture Mechanism and Properties of Metal Matrix Composites” in Key Engineering Materials, G.M. Newaz, H. Neber-Asehbacher, and F.H. Wohlbier, ed., Trans Tech Publication, Aedermansdorf, Switzerland, 1995, Vol. 104, pp. 791–98.Google Scholar
  16. 16.
    W.W. Gerberich: “Microstructure and Fracture,” ASM Handbook on Mechanical Testing, 1995, 8, pp. 476–92.Google Scholar
  17. 17.
    V.V. Bhanuprasad, M.A. Staley, P. Ramakrishnan, and Y.R. Mahajan: “Fractography of SiC Particulate Reinforced Aluminum Metal Matrix Composites” in Key Engineering Materials, G.M. Newaz, H. Neber-Aesehbacher, and F.H. Wohlbier, ed., Trans Tech Publication, Aedermansdorf, Switzerland, 1995, 104, pp. 495–506.Google Scholar
  18. 18.
    Y. Torisaka and S. Kojima: “Superplasticity and Internal Friction of a Superplastic Zn-22%Al Eutectiod Alloy,” Acta Metall. Mater. 1991, 39(5), pp. 947–54.CrossRefGoogle Scholar
  19. 19.
    N.V. Ravi Kumar and E.S. Dwarakadasa: “Effect of Matrix Strength on the Mechanical Properties of Al-Zn-Mg/SiCp Composites,” Composites Part A, 2001, 31, pp. 1139–45.CrossRefGoogle Scholar
  20. 20.
    Y. Chen and M. Tu: “Dimension Shrinkage of Supersaturated ZA27Cu1 and ZA27Cu2 Alloy,” Mater. Sci. Technol., 1998, 14, pp. 473–76.Google Scholar
  21. 21.
    T. Savaskan and S. Murphy: “Decomposition of Zn-Al Alloy on Quench-Aging,” Mater. Sci. Technol., 1990, 6, pp. 695–703.Google Scholar

Copyright information

© ASM International 2002

Authors and Affiliations

  • G. Ranganath
    • 1
  • S. C. Sharma
    • 2
  • M. Krishna
    • 2
  • M. S. Muruli
    • 2
  1. 1.Adhiyamaan College of EngineeringTamil NaduIndia
  2. 2.Research and DevelopmentR.V. College of EngineeringBangaloreIndia

Personalised recommendations