Thermal fatigue resistance of discontinuously reinforced cast aluminum-matrix composites

  • J. Sobczak
  • N. Sobczak
  • P. Darlak
  • Z. Slawinski
  • R. Asthana
  • P. Rohatgi


The thermal fatigue resistance of AlSi alloys and discontinuously reinforced Al-matrix composites containing graphite, silicon carbide, and fly ash particulates, and short alumina (Saffil) fibers was characterized by measuring the total length of microcracks on gravity-cast and squeeze-cast test specimens as a function of number of thermal cycles (1000–5000 cycles, 270 K amplitude). In each thermal cycle, the test specimens were heated and stabilized in air at 375 °C, water quenched, and air stabilized. In all specimens, the total crack length on a specified region increased with increasing number of thermal cycles. Whereas among monolithic alloys, squeeze-cast Al-12SiCuNiMg alloy exhibited better resistance to thermal cracking than Al-25Si and Al-20SiNi alloys, among the composites, squeeze-cast Al-alumina and Al-fly ash composites exhibited the best thermal fatigue resistance. The theoretical estimates of the thermal fatigue resistance of these composites are consistent with the experimental observations.


cast composites fly ash squeeze casting thermal expansion thermal fatigue 


  1. 1.
    Y.M. Cheong and H.L. Marcus: “In-Situ Thermal Cycling in SEM of a Graphite-Aluminum Composite,” Scripta Mater., 1987, 21, pp. 1529–34.CrossRefGoogle Scholar
  2. 2.
    T. Kyono, E. Kurodo, A. Kitamura, T. Mori, and M. Taya: “Effects of Thermal Cycling on Properties of Carbon Fiber/Aluminum Composites,” J. Eng. Mater. Technol (ASME), 1988, 110, pp. 89–95.CrossRefGoogle Scholar
  3. 3.
    S. Yoda, N. Kurihara, K. Wakashima, and S. Umekawa: “Thermal Cycling Induced Deformation of Fibrous Composites With Particular Reference to the Tungsten/Copper System,” Metall. Trans., 1978, 9A, pp. 1229–36.Google Scholar
  4. 4.
    H.H. Grimes, R.A. Lad, and J.E. Masial: “Thermal Degradation of Tensile Strength of Unidirectional Boron/Al Composites,” Metall. Trans., 1977, 8A, pp. 1999–2005.Google Scholar
  5. 5.
    A.K. Misra: “Effect of Thermal Cycling on Interface Bonding Requirements in Alumina Fiber-Reinforced Superalloy Composites,” Scripta Mater., 1993, 28, pp. 1189–94.CrossRefGoogle Scholar
  6. 6.
    W.H. Kim, M.J. Koczak, and A. Lawley: “Effects of Isothermal and Cyclic Exposure on Interface Structure and Mechanical Properties of FP-Alumina/Al Composite” in New Developments and Applications in Composites, D. Kuhlmann-Wilsdorf and W.C. Harrigan, Jr., ed., TMS of AIME, Warrendale, PA, 1979, pp. 40–53.Google Scholar
  7. 7.
    W.G. Patterson and M. Taya: “Thermal Cycling Damage of SiC Whisker/2124 Al Aluminum” in Proceedings of International Conference on Composite Materials (ICCM-V), W.C. Harrigan, Jr., et al., ed., TMS of AIME, Warrendale, PA, 1985, pp. 53–66.Google Scholar
  8. 8.
    M. Nakanishi, Y. Nishida, H. Matsubara, M. Yamada, and Y. Tozawa: “Effect of Thermal Cycling on the Properties of SiC Whisker Reinforced-Aluminum Alloys,” J. Mater. Sci. Lett., 1990, 9, pp. 470–72.CrossRefGoogle Scholar
  9. 9.
    F. Rezai-Aria, T. Liechti, and G. Gagnon: “Thermal Cycling Behavior of a Pure Al-15% Saffil MMC,” Scripta Mater., 1993, 28, pp. 587–92.CrossRefGoogle Scholar
  10. 10.
    W. Hennig, C. Meltzer, and S. Mielke: “Keramische Gradienenwerkstoffe für Komponenten in Verbrennungsmotoren,” Metall., 1992, Hf.5, J.46, pp. 436–39 (in German).Google Scholar
  11. 11.
    J. Sobczak: “Metal-Matrix Composites Fabricated by the Squeeze Casting Process,” Trans. Foundry Res. Inst., (Special Issue), Krakow, 1993, 415, pp. 1–99.Google Scholar
  12. 12.
    Anon: “Properties and Selection: Nonferrous Alloys & Special-Purpose Materials,” Metals Handbook, Vol. 2, 10th ed., ASM International, Materials Park, OH, 1990, pp. 152–77.Google Scholar
  13. 13.
    N. Sobczak, J. Sobczak, and P.K. Rohatgi: “Using Fly Ash Waste Material for the Synthesis of Light-Weight, Low-Cost Al-Matrix Composites” in Proceedings of ECOMAP-98, High-Temperature Society of Japan, Kyoto, Japan, 1998, pp. 195–204.Google Scholar
  14. 14.
    A.L. Geiger and M. Jackson: “Low Expansion MMC’s Boost Avionics,” Adv. Mater. Proc., 1989, 7, pp. 23–30.Google Scholar
  15. 15.
    D.J. Lloyd: “Particulate Reinforced Al and Mg Composites,” Int. Mater. Rev., 1994, 39(1), pp. 1–27.Google Scholar
  16. 16.
    M. Taya and R.J. Arsenault: Metal Matrix Composite-Thermomechanical Behavior, Pergamon Press, New York, NY, 1989, p. 245.Google Scholar
  17. 17.
    R.U. Vaidya and K.K. Chawla: “Thermal Expansion of Metal-Matrix Composites,” Comp. Sci. Technol., 1994, 50, pp. 13–22.CrossRefGoogle Scholar
  18. 18.
    C.H. Lee: “Dynamic Mismatch Between Bonded Dissimilar Materials,” JOM, Jun 1993, pp. 43–46.Google Scholar

Copyright information

© ASM International 2002

Authors and Affiliations

  • J. Sobczak
    • 1
  • N. Sobczak
    • 1
  • P. Darlak
    • 1
  • Z. Slawinski
    • 2
  • R. Asthana
    • 3
  • P. Rohatgi
    • 4
  1. 1.Foundry Research InstituteKrakowPoland
  2. 2.Technical University of LublinLublinPoland
  3. 3.Manufacturing Engineering, Technology Dept.University of Wisconsin-StoutMenomonie
  4. 4.Materials DepartmentUniversity of Wisconsin-MilwaukeeMilwaukee

Personalised recommendations