Skip to main content
Log in

Thermal fatigue resistance of discontinuously reinforced cast aluminum-matrix composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The thermal fatigue resistance of AlSi alloys and discontinuously reinforced Al-matrix composites containing graphite, silicon carbide, and fly ash particulates, and short alumina (Saffil) fibers was characterized by measuring the total length of microcracks on gravity-cast and squeeze-cast test specimens as a function of number of thermal cycles (1000–5000 cycles, 270 K amplitude). In each thermal cycle, the test specimens were heated and stabilized in air at 375 °C, water quenched, and air stabilized. In all specimens, the total crack length on a specified region increased with increasing number of thermal cycles. Whereas among monolithic alloys, squeeze-cast Al-12SiCuNiMg alloy exhibited better resistance to thermal cracking than Al-25Si and Al-20SiNi alloys, among the composites, squeeze-cast Al-alumina and Al-fly ash composites exhibited the best thermal fatigue resistance. The theoretical estimates of the thermal fatigue resistance of these composites are consistent with the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.M. Cheong and H.L. Marcus: “In-Situ Thermal Cycling in SEM of a Graphite-Aluminum Composite,” Scripta Mater., 1987, 21, pp. 1529–34.

    Article  CAS  Google Scholar 

  2. T. Kyono, E. Kurodo, A. Kitamura, T. Mori, and M. Taya: “Effects of Thermal Cycling on Properties of Carbon Fiber/Aluminum Composites,” J. Eng. Mater. Technol (ASME), 1988, 110, pp. 89–95.

    Article  CAS  Google Scholar 

  3. S. Yoda, N. Kurihara, K. Wakashima, and S. Umekawa: “Thermal Cycling Induced Deformation of Fibrous Composites With Particular Reference to the Tungsten/Copper System,” Metall. Trans., 1978, 9A, pp. 1229–36.

    Article  CAS  Google Scholar 

  4. H.H. Grimes, R.A. Lad, and J.E. Masial: “Thermal Degradation of Tensile Strength of Unidirectional Boron/Al Composites,” Metall. Trans., 1977, 8A, pp. 1999–2005.

    Article  CAS  Google Scholar 

  5. A.K. Misra: “Effect of Thermal Cycling on Interface Bonding Requirements in Alumina Fiber-Reinforced Superalloy Composites,” Scripta Mater., 1993, 28, pp. 1189–94.

    Article  CAS  Google Scholar 

  6. W.H. Kim, M.J. Koczak, and A. Lawley: “Effects of Isothermal and Cyclic Exposure on Interface Structure and Mechanical Properties of FP-Alumina/Al Composite” in New Developments and Applications in Composites, D. Kuhlmann-Wilsdorf and W.C. Harrigan, Jr., ed., TMS of AIME, Warrendale, PA, 1979, pp. 40–53.

    Google Scholar 

  7. W.G. Patterson and M. Taya: “Thermal Cycling Damage of SiC Whisker/2124 Al Aluminum” in Proceedings of International Conference on Composite Materials (ICCM-V), W.C. Harrigan, Jr., et al., ed., TMS of AIME, Warrendale, PA, 1985, pp. 53–66.

    Google Scholar 

  8. M. Nakanishi, Y. Nishida, H. Matsubara, M. Yamada, and Y. Tozawa: “Effect of Thermal Cycling on the Properties of SiC Whisker Reinforced-Aluminum Alloys,” J. Mater. Sci. Lett., 1990, 9, pp. 470–72.

    Article  CAS  Google Scholar 

  9. F. Rezai-Aria, T. Liechti, and G. Gagnon: “Thermal Cycling Behavior of a Pure Al-15% Saffil MMC,” Scripta Mater., 1993, 28, pp. 587–92.

    Article  CAS  Google Scholar 

  10. W. Hennig, C. Meltzer, and S. Mielke: “Keramische Gradienenwerkstoffe für Komponenten in Verbrennungsmotoren,” Metall., 1992, Hf.5, J.46, pp. 436–39 (in German).

    Google Scholar 

  11. J. Sobczak: “Metal-Matrix Composites Fabricated by the Squeeze Casting Process,” Trans. Foundry Res. Inst., (Special Issue), Krakow, 1993, 415, pp. 1–99.

    Google Scholar 

  12. Anon: “Properties and Selection: Nonferrous Alloys & Special-Purpose Materials,” Metals Handbook, Vol. 2, 10th ed., ASM International, Materials Park, OH, 1990, pp. 152–77.

  13. N. Sobczak, J. Sobczak, and P.K. Rohatgi: “Using Fly Ash Waste Material for the Synthesis of Light-Weight, Low-Cost Al-Matrix Composites” in Proceedings of ECOMAP-98, High-Temperature Society of Japan, Kyoto, Japan, 1998, pp. 195–204.

    Google Scholar 

  14. A.L. Geiger and M. Jackson: “Low Expansion MMC’s Boost Avionics,” Adv. Mater. Proc., 1989, 7, pp. 23–30.

    Google Scholar 

  15. D.J. Lloyd: “Particulate Reinforced Al and Mg Composites,” Int. Mater. Rev., 1994, 39(1), pp. 1–27.

    Article  CAS  Google Scholar 

  16. M. Taya and R.J. Arsenault: Metal Matrix Composite-Thermomechanical Behavior, Pergamon Press, New York, NY, 1989, p. 245.

    Google Scholar 

  17. R.U. Vaidya and K.K. Chawla: “Thermal Expansion of Metal-Matrix Composites,” Comp. Sci. Technol., 1994, 50, pp. 13–22.

    Article  CAS  Google Scholar 

  18. C.H. Lee: “Dynamic Mismatch Between Bonded Dissimilar Materials,” JOM, Jun 1993, pp. 43–46.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobczak, J., Sobczak, N., Darlak, P. et al. Thermal fatigue resistance of discontinuously reinforced cast aluminum-matrix composites. J. of Materi Eng and Perform 11, 595–602 (2002). https://doi.org/10.1361/105994902770343566

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105994902770343566

Keywords

Navigation