Effects of some material and experimental variables on the slurry wear characteristics of zinc-aluminum alloys

  • B. K. Prasad
  • O. P. Modi
  • A. K. Jha
  • A. K. Patwardhan


In this study, the slurry wear behavior of a zinc-based alloy has been examined by the sample rotation method over a range of traversal speeds and distances. The influence of adding silicon to the alloy system on its wear characteristics has also been examined.

The wear rate of the samples increased with increasing traversal distance initially, attained a peak, and then tended to decrease at longer distances. The initial increase in wear rate with distance was attributed to the indenting effect of the slurry constituents (i.e., liquid droplets and the erodant particles) associated with the corrosive action of the liquid in slurry. On the contrary, factors such as entrapment of the erodant mass as well as the corrosion products in the cavities formed on the specimen surfaces could lead to the decrease in wear rate at longer traversal distances. The existence of silicon particles in the alloy microstructure led to improved wear resistance of the alloy system. This was due to the resistance offered by the hard silicon particles against the impinging action of the slurry constituents. Attainment of the wear rate peak at longer traversal distances in the case of the silicon-containing alloy over the one without the element further substantiated the superior wear resistance offered by the silicon particles. Traversal speed led to higher wear rates irrespective of the test conditions and material composition due to the more severe attack of the medium on the specimen surface. However, the presence of silicon particles in the alloy microstructure offered improved wear resistance (inverse of wear rate).


distance erosion-corrosion-abrasion microstructure-property correlation slurry wear behavior traversal speed zinc-aluminum alloys 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.J. Kubel, Jr.: Adv. Mater. Proc., 1987, vol. 132, pp. 51–57.Google Scholar
  2. 2.
    M.J. Barber and P.E. Jones: Foundry Trade J., 1980, vol. 148, pp. 114–31.Google Scholar
  3. 3.
    D. Apelian, M. Paliwal, and D.C. Herrschaft: J. Met., 1981, vol. 133, pp. 12–20.Google Scholar
  4. 4.
    B.K. Prasad, S. Das, A.K. Jha, O.P. Modi, R. Dasgupta, and A.H. Yegneswaran: Proc. XI Nat. Convention of Mechanical Engineers, A.D. Telang and H.B. Khurasia eds., Nov. 25–26, 1995, Bhopal, India, The Institution of Engineers (I), Bhopal, India, 1995, pp. M1-M9.Google Scholar
  5. 5.
    J. Zahavi and H.J. Wagner: Proc. Symp. Corrosion-Erosion/Behavior of Materials, Fall Meeting of TMS-AIME, St. Louis, MO, Oct. 17–18, 1978, K. Natesan, ed., AIME, Warrendale, PA, 1978, pp. 226–34.Google Scholar
  6. 6.
    B.K. Prasad, A.K. Patwardhan, and A.H. Yegneswaran: J. Mater. Eng. Perf., 1998, vol. 7, pp. 130–35.CrossRefGoogle Scholar
  7. 7.
    B.K. Prasad, A.K. Patwardhan, and A.H. Yegneswaran: Scripta. Mater., 1997, vol. 37, pp. 323–28.CrossRefGoogle Scholar
  8. 8.
    B.K. Prasad: Z. Metallkd., 1997, vol. 88, pp. 929–33.Google Scholar
  9. 9.
    B.K. Prasad, K. Venkateswarlu, O.P. Modi, S. Das, A.K. Jha, R. Dasgupta, and A.H. Yegneswaran: Proc. Int. Conf. Aluminium (INCAL-98), Feb. 11–13, 1998, D.H. Sastry, S. Subramanian, K.S.S. Murthy, and K.P. Abraham, eds., The Aluminium Association of India, New Delhi, 1998, vol. 2, pp. 9–16.Google Scholar
  10. 10.
    M.A. Dellis, J.K. Keustermans, and F. Delannay: Mater. Sci. Eng. A, 1991, vol. 135A, pp. 253–57.Google Scholar
  11. 11.
    L.D. Bailey, S. Dionne, and S.H. Lo: Proc. Fundamental Relationship between Microstructure and Properties of Metal Matrix Composites, P.K. Liaw and M.N. Gungor, eds., TMS, Warrendale, PA, 1990, pp. 23–25.Google Scholar
  12. 12.
    S. Muthukumaraswamy and S. Seshan: Composites, 1995, vol. 26, pp. 387–93.Google Scholar
  13. 13.
    S.H.J. Lo, S. Dionne, M. Sahoo, and H.M. Hawthorne: J. Mater. Sci., 1992, vol. 27, pp. 5681–91.CrossRefGoogle Scholar
  14. 14.
    H.X. Zhu and S.K. Liu: Composites, 1993, vol. 5, pp. 437–42.CrossRefGoogle Scholar
  15. 15.
    N.B. Dahotre, T.D. McCay, and M.H. McCay: J. Met., 1990, vol. 42, pp. 44–47.Google Scholar
  16. 16.
    M. Saxena, O.P. Modi, B.K. Prasad, and A.K. Jha: Wear, 1993, vol. 169, pp. 119–24.CrossRefGoogle Scholar
  17. 17.
    R. Dasgupta, B.K. Prasad, A.K. Jha, O.P. Modi, S. Das, and A.H. Yegneswaran: Wear, 1997, vol. 213, pp. 41–46.CrossRefGoogle Scholar
  18. 18.
    R. Dasgupta, B.K. Prasad, A.K. Jha, O.P. Modi, S. Das, and A.H. Yegneswaran: Wear, 1997, vol. 209, pp. 255–62.CrossRefGoogle Scholar
  19. 19.
    O.P. Modi, M. Saxena, B.K. Prasad, A.H. Yegneswaran, and M.L. Vaidya: J. Mater. Sci., 1992, vol. 27, pp. 3897–3902.CrossRefGoogle Scholar
  20. 20.
    S. Turene, D. Simard, and M. Fiset: Wear, 1991, vol. 149, pp. 187–97.CrossRefGoogle Scholar
  21. 21.
    S. Turene, Y. Chatigny, D. Simard, S. Caron, and J. Masounave: Wear, 1990, vol. 141, pp. 147–58.CrossRefGoogle Scholar
  22. 22.
    A.V. Levy: Corrosion, 1995, vol. 51, pp. 872–83.CrossRefGoogle Scholar
  23. 23.
    Deonath and T.K.G. Namboodhiri: Composites, 1988, vol. 19, pp. 237–43.CrossRefGoogle Scholar
  24. 24.
    Y. Li, G.T. Burstein, and I.M. Hutchings: Wear, 1995, vol. 181–183, pp. 70–79.CrossRefGoogle Scholar

Copyright information

© ASM International 2001

Authors and Affiliations

  • B. K. Prasad
    • 1
  • O. P. Modi
    • 1
  • A. K. Jha
    • 1
  • A. K. Patwardhan
    • 2
  1. 1.Regional Research Laboratory (CSIR)Near Habibganj NakaBhopalIndia
  2. 2.Metallurgical Engineering DepartmentUniversity of RoorkeeRoorkeeIndia

Personalised recommendations