The impact fracture behavior of aluminum alloy 2024-T351: Influence of notch severity

  • T. S. Srivatsan
  • Julie Champlin
  • P. C. Lam
  • J. Zakrajsek
  • M. Manoharan


In this paper, the interactive influences of notch severity and test temperature on the impact properties and fracture behavior of a Al-Cu-Mg alloy 2024 in the T351 microstructural condition is presented and discussed. Notch angles of 45, 60, 75, and 90° were chosen for a standard Charpy impact test specimen containing two notches. For a given angle of the notch, an increase in dynamic fracture toughness, with test temperature, is most significant for the least severe of the notches, i.e., 45°. At a given test temperature, the impact toughness decreased with an increase in notch severity. An increase in notch severity resulted in Mode I dominated failure at all test temperatures. The influence of localized mixed-mode loading is minimal for the alloy in the T351 microstructural condition. The impact fracture behavior of the alloy is rationalized in light of alloy microstructure, mechanisms governing fracture, and the deformation field ahead of the propagating crack.


alloy 2024-T351 aluminum impact testing notch severity temperature 


  1. 1.
    M. Yoda: Eng. Fract. Mech., 1980, vol. 13, p. 647.CrossRefGoogle Scholar
  2. 2.
    R.J. Bucci: Eng. Fract. Mech., 1979, vol. 12, pp. 407–41.CrossRefGoogle Scholar
  3. 3.
    Y. Ueda, K. Ikeda, T. Yao, and M. Aoki: Eng. Fract. Mech., 1983, vol. 18, p. 1131.CrossRefGoogle Scholar
  4. 4.
    M.T. Miglin, J.P. Hirth, and A.R. Rosenfield: Int. J. Fract., 1983, vol. 22, p. R65.Google Scholar
  5. 5.
    M.T. Miglin, J.P. Hirth, and A.R. Rosenfield: Res. Mechanica, 1984, vol. 11, p. 85.Google Scholar
  6. 6.
    J.G. Schroth, J.P. Hirth, R.G. Hoagland, and A.R. rosenfield: Metall. Trans. A, 1987, vol. 18A, p. 1061.Google Scholar
  7. 7.
    M. Manoharan, J.P. Hirth, and A.R. Rosenfield: Scripta Metall., 1989, vol. 23, p. 763.CrossRefGoogle Scholar
  8. 8.
    S.V. Kamat, J.P. Hirth, and R. Mehrabian: Scripta Metall., 1989, vol. 23, p. 523.CrossRefGoogle Scholar
  9. 9.
    E.A. Starke, Jr.: Mater. Sci. Eng., 1977, vol. 29, pp. 99–115.CrossRefGoogle Scholar
  10. 10.
    ASTM Standard E-23-93: “Standard Method for Notched Bar Impact Testing of Metallic Materials,” ASTM, Philadelphia, PA, 1993.Google Scholar
  11. 11.
    V. Tvergaard: J. Mech. Phys. Solids, 1987, vol. 35, p. 43.CrossRefGoogle Scholar
  12. 12.
    M. Manoharan, S. Raghavachary, J.P. Hirth, and A.R. Rosenfield: J. Eng. Mater. Technol., 1989, vol. 111, p. 440.CrossRefGoogle Scholar
  13. 13.
    Manoharan, J.P. Hirth, and A.R. Rosenfield: J. Testing Eval., 1990, vol. 18, p. 106.CrossRefGoogle Scholar
  14. 14.
    M. Manoharan, J.P. Hirth, and A.R. Rosenfield: Acta Metall. Mater., 1991, vol. 39, p. 1203.CrossRefGoogle Scholar
  15. 15.
    A.M. Kumar and J.P. Hirth: Scripta Metall. Mater., 1991, vol. 25, p. 981.CrossRefGoogle Scholar

Copyright information

© ASM International 2001

Authors and Affiliations

  • T. S. Srivatsan
    • 1
  • Julie Champlin
    • 1
  • P. C. Lam
    • 1
  • J. Zakrajsek
    • 1
  • M. Manoharan
    • 2
  1. 1.Department of Mechanical EngineeringThe University of AkronAkron
  2. 2.Division of Applied SciencesNanyang Technological UniversitySingapore

Personalised recommendations