Residual stress state after the laser surface remelting process

  • Janez Grum
  • Roman Šturm
Article

Abstract

Residual stresses are a result of elasto-plastic deformations induced in the workpiece material during the heat treatment process. The extent and magnitude of internal stresses depend on temperature conditions in heating and cooling and physical properties of the workpiece material. This contribution discusses the extent and distribution of residual stresses after laser remelting a thin surface layer on ductile iron 80-55-06 (ASTM specification) or Gr 500-7 according to ISO. Residual stresses are not only induced by temperature differences but also result from stresses due to microstructural changes between the surface and the core of the specimen subsequent to cooling to the ambient temperature. The distribution and extent of residual stresses in the remelted thin surface layer depend mostly on melt composition and cooling conditions. Different rates of solidification and subsequent cooling of the remelted layer are reflected in the volume proportions of the created cementite, residual austenite, and martensite in the microstructure. The rate of heating and cooling of the thin surface layer is a function of laser power, beam diameter on the workpiece surface, and interaction time. In addition, the number of passes of the laser beam over the workpiece surface and different degrees of laser trace overlapping were increased to see how these can affect the thermal conditions in the workpiece. To determine the residual stresses, the relaxation method was used. This is based on measuring the specimen strain during electrochemical material removal.

Keywords

ductile iron laser melting microstructure and residual stress surface modifications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Rosenthal: Trans. ASME, 1946, Nov., pp. 849–66.Google Scholar
  2. 2.
    H.S. Carslaw and J.C. Jaeger: Conduction of Heat in Solids, 2nd ed., 1959, Clarendon Press, Oxford, United Kingdom, 1986.Google Scholar
  3. 3.
    H.E. Cline and T.R. Anthony: J. Appl. Phys., 1977, vol. 48 (9), pp. 3895–3900.CrossRefGoogle Scholar
  4. 4.
    M. Bass: in Laser Heating of Solids, M. Bertolotti, ed., Plenum Press, New York, NY, 1983, pp. 77–115.Google Scholar
  5. 5.
    E. Geissler and H.W. Bergmann: “Calculation of Temperature Profiles, Heating and Quenching Rates during Laser Processing,” B.L. Mordike, ed., Papers presented at the Eur. Conf. on Laser Treatment of Materials 1986, Bad Neuheim, Germany, Deutsche Gesellschaft für Metallkunde E.V., DGM Informationgeselschaft mbH, Oberursel, Germany, 1987, pp. 101–14.Google Scholar
  6. 6.
    M. de Freitas, M.S. Pereira, H. Michaud, and D. Pantelis: Mater. Sci. Eng., 1993, vol. A167 (1–2), pp. 115–22.Google Scholar
  7. 7.
    S. Denis, A. Simon, and G. Beck: in Analysis of the Thermomechanical Behaviour of Steel during Martensitic Quenching and Calculation of Internal Stresses, E. Macherauch and V. Hauk, eds., Eigenspannungen: Entstehung-Messung-Bewertung, Deutche Gesellschaft für Metallkunde E. V., Oberursel, Germany, 1983, Band 1, pp. 211–37.Google Scholar
  8. 8.
    D. Grevey, L. Maiffredy, and A.B. Vannes: J. Mech. Working Technol., 1988, vol. 16 (1), pp. 65–78.CrossRefGoogle Scholar
  9. 9.
    Y.S. Yang and S.J. Na: Surf. Coating Technol., 1989, vol. 38 (3), pp. 311–24.CrossRefGoogle Scholar
  10. 10.
    Y.S. Yang and S.J. Na: Surf. Coatings Technol., 1990, vol. 42 (2), pp. 165–74.CrossRefGoogle Scholar
  11. 11.
    J. Domes, D. Müller, and H.W. Bergmann: ECLAT ’88, Deutscher Verlag fur Schweisstechnik (DVS) GmbH, Dusseldorf, Germany, 1988, 163, pp. 272–77.Google Scholar
  12. 12.
    J. Grum and R. šturm: J. Mech. Eng., Ljubljana, 1995, vol. 41 (11–12), pp. 371–80.Google Scholar
  13. 13.
    J. Grum and R. Šturm: Proc. Conf. “MAT-TEC 96,” Subject Editor: Jian Lu, Technology Transfer Series, Series Editor; A. Niku-Lari, IITT International, Gournay Sur Marne, Paris, France, 1996, pp. 185–93.Google Scholar
  14. 14.
    J. Grum and R. Šturm: Proc. Conf. “Quenching ’96,” Cleveland, OH, ASM International, Materials Park, OH, 1996, pp. 193–200.Google Scholar
  15. 15.
    J. Grum and R. Šturm: Surf. Coatings Technol., 1997, vol. 100–101, pp. 455–58.Google Scholar
  16. 16.
    J. Grum and R. Šturm: J. Mater. Eng. Performance, 2000, vol. 9 (2), pp. 138–46.CrossRefGoogle Scholar
  17. 17.
    S. Hariri, R. Vaucher, P. Flahaut, D. Eyzop, and C. Robin: Proc. Int. Conf. “MAT-TEC’ 96,”, Subject Editor: Jian Lu, Technology Transfer Series, Series Editor; A. Niku-Lari, IITT International, Gournay Sur Marne, Paris, France, 1996, pp. 111–18.Google Scholar
  18. 18.
    R. Šturm: Ph.D. Thesis, University of Ljubljana, Ljubljana, 1998.Google Scholar

Copyright information

© ASM International 2001

Authors and Affiliations

  • Janez Grum
    • 1
  • Roman Šturm
    • 1
  1. 1.Faculty of Mechanical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations