Journal of Materials Engineering and Performance

, Volume 10, Issue 5, pp 526–536 | Cite as

Effects of cooling time and alloying elements on the microstructure of the gleeble-simulated heat-affected zone of 22% Cr duplex stainless steels

  • Rong-Iuan Hsieh
  • Horng-Yih Liou
  • Yeong-Tsuen Pan
Article

Abstract

The effects of austenite stabilizers, such as nitrogen, nickel, and manganese, and cooling time on the microstructure of the Gleeble simulated heat-affected zone (HAZ) of 22% Cr duplex stainless steels were investigated. The submerged are welding was performed for comparison purposes. Optical microscopy (OM) and transmission electron microscopy (TEM) were used for microscopic studies. The amount of Cr2N precipitates in the simulated HAZ was determined using the potentiostatic electrolysis method. The experimental results indicate that an increase in the nitrogen and nickel contents raised the δ to transformation temperature and also markedly increased the amount of austenite in the HAZ. The lengthened cooling time promotes the reformation of austenite. An increase in the austenite content reduces the supersaturation of nitrogen in ferrite matrix as well as the precipitation tendency of Cr2N. The optimum cooling time from 800 to 500 °C (Δt 8/5) obtained from the Gleeble simulation is between 30 and 60 s, which ensures the austenite content in HAZ not falling below 25% and superior pitting and stress corrosion cracking resistance for the steels. The effect of manganese on the formation of austenite can be negligible.

Keywords

austenite chromium carbide chromium nitride duplex stainless steel ferrite heat-affected zone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Kudo, H. Tsuge, and T. Moroishi: Corr. J., 1989, vol. 45, p. 831.Google Scholar
  2. 2.
    W.A. Baeslack and J.C. Lippold: Met. Const., 1988, vol. 20, p. 26R.Google Scholar
  3. 3.
    L. Karlsson, L. Ryen, and S. Pak: Weld. J., 1995, vol. 74, p. 28.Google Scholar
  4. 4.
    R.M. Davison and J.D. Redmond: Mater. Selection Design, 1990, vol. 11, p. 57.Google Scholar
  5. 5.
    T. Omura, T. Kushida, T. Kudo, T. Hayashi, Y. Matsuhiro, and T. Hikida: Tetsu-to-Hagané, 1997, vol. 83, p. 37.Google Scholar
  6. 6.
    B.E.S. Lindblom, B. Lundquivst, and N. Hannerz: Scand. J. Metall., 1991, vol. 20, p. 305.Google Scholar
  7. 7.
    G.L. Leone and H.W. Kerr: Weld. J., 1982, vol. 61, p. 13.Google Scholar
  8. 8.
    N. Suutala, T. Talkalo, and T. Moisio: Metall. Trans. A, 1980, vol. 11A, p. 717.Google Scholar
  9. 9.
    S. Hertzman, P.J. Ferreira, and B. Brolund: Metall. Mater. Trans. A, 1997, vol. 28A, p. 277.CrossRefGoogle Scholar
  10. 10.
    S. Atamert and J.E. King: Mater. Sci. Technol., 1992, vol. 8, p. 896.Google Scholar
  11. 11.
    B. Sundman, B. Jansson, and J.O. Andersson: CALPHAD, 1985, vol. 9, p. 153.CrossRefGoogle Scholar
  12. 12.
    R.N. Gunn: Duplex Stainless Steels—Microstructure, Properties and Applications, Woodhead Publishing Ltd., Cambridge, United Kingdom, 1997.Google Scholar
  13. 13.
    H. Tsuge, Y. Tarutani, and T. Kudo: Corr. J., 1988, vol. 44, p. 305.Google Scholar
  14. 14.
    M.J. Huh, S.B. Kom, K.W. Paik, and Y.G. Kim: Scripta Mater., 1997, vol. 36, p. 775.CrossRefGoogle Scholar
  15. 15.
    R.W.K. Honeycombe: Steels Microstructure and Properties, Edward Arnold Ltd., London, 1981.Google Scholar
  16. 16.
    H.Y. Liou, R.I. Hsieh, and W.T. Tsai: Materials Chemistry and Physics, to be published.Google Scholar
  17. 17.
    H. Lee, C.H. Yoo, and H.M. Lee: Mater. Technol., 1998, vol. 14, p. 54.Google Scholar

Copyright information

© ASM International 2001

Authors and Affiliations

  • Rong-Iuan Hsieh
    • 1
  • Horng-Yih Liou
    • 1
  • Yeong-Tsuen Pan
    • 1
  1. 1.Steel and Aluminum Research and Development DepartmentChina Steel Corporation, Hsiao KangKaohsiungTaiwan, Republic of China

Personalised recommendations