Characterization and sinterability of oxide-dispersion strengthened nickel powder produced by mechanical alloying

  • K. E. Mohamed
  • H. P. Buchkremer
  • D. Stover


Among the main requirements for the Ni/8% yttria stabilized zirconia (Ni/8YSZ) material, currently used for manufacturing solid oxide fuel cell (SOFC) anodes, fine homogeneous microstructure, considerable structural and mechanical stability, and sufficient gas permeability are of primary concern. In the present investigation, oxide-dispersion strengthened composite Ni powders containing 2, 5, and 10 vol.% 8YSZ were produced by mechanical alloying (MA) in air using a planetary milling machine and ZrO2 milling media. The progress of the MA process was followed by particle size analysis, optical metallography, and x-ray diffraction (XRD) techniques. Results showed that dispersion of the oxide particles and structural refinement reached a significant point after milling for 180 h. The crystallite size and lattice distortion showed considerable dependence on the processing parameters. The mechanically alloyed powders were sintered at 1100° to 1350 °C. The mechanically alloyed powder containing 10 vol.% 8YSZ exhibited maximum densification. The minimum sintered density was observed for the composite powder containing 2 vol.% 8YSZ.


mechanical alloying oxide-dispersion strengthened Ni solid oxide fuel cell (SOFC) anode yttria-stabilized ZrO2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.C. Benn and P.K. Mirchandani: in “New Materials by Mechanical Alloying Techniques,” DGM Informationsgesellschaft Verlag, Oberursel, 1989, pp. 19–38.Google Scholar
  2. 2.
    J.S. Benjamin: Sci. Am., 1976, vol. 234, pp. 40–48.CrossRefGoogle Scholar
  3. 3.
    C.C. Koch: Ann. Rev. Mater. Sci., 1989, vol. 19, pp. 121–143.CrossRefGoogle Scholar
  4. 4.
    R. Orban and S. Domsa: “Powder Metallurgy World Congress,” PM 94, Paris, 1994, vol. 2, p. 1353.Google Scholar
  5. 5.
    O. Haruyama and N. Asahi: J. Alloys and Compounds, 1993, vol. 194, pp. 361–71.CrossRefGoogle Scholar
  6. 6.
    C.C. Koch, O.B. Cavin, C.G. McKamey, and J.O. Scarbrough: Appl. Phys. Lett., 1983, vol. 43, p. 1017.CrossRefGoogle Scholar
  7. 7.
    J.S.C. Jang and C.C. Koch: J. Mater. Res., 1990, vol. 5 (3), p. 498.Google Scholar
  8. 8.
    J. Eckert, L. Schultz, and K. Urban: Appl. Phys. Lett., 1989, vol. 55, p. 117.CrossRefGoogle Scholar
  9. 9.
    E. Hellstern, H.J. Fecht, Z. Fu, and W.L. Johnson: J. Appl. Phys., 1989, vol. 65, p. 305.CrossRefGoogle Scholar
  10. 10.
    D. Michel, F. Faudot, E. Gaffet, and L. Mazerolles: J. Am. Cer. Soc., 1993, vol. 76 (11), p. 2884.CrossRefGoogle Scholar
  11. 11.
    R. Wilkenhoener, T. Kloidt, and W. Mallener: in “Electrochemical Proceedings,” U. Stimming et al., ed., The Electrochemical Society, Inc., Pennigton, NJ, 1997, p. 851.Google Scholar
  12. 12.
    M.F. Ashby, S. Bahk, J. Bevk, and D. Turnbull: Progr. Mater. Sci., 1980, vol. 25, p. 1.CrossRefGoogle Scholar
  13. 13.
    Y. Arami and O. Iwatsu: J. Jpn. Soc. Powder Powder Metall., 1991, vol. 38, p. 47.Google Scholar
  14. 14.
    Y. Arami and O. Iwatsu: J. Jpn. Soc. Powder Powder Metall., 1996, vol. 43, p. 1289.Google Scholar
  15. 15.
    A. Guiner: in “X-Ray Diffraction,” W.H. Freeman, San Francisco, CA, 1963, p. 124.Google Scholar
  16. 16.
    J. Friedel: “Dislocations,” Pergamon Press, Oxford, United Kingdom, 1964, p. 418.Google Scholar
  17. 17.
    T.D. Shen, K.Y. Wang, M.X. Quan, and J.T. Wang: J. Mater. Sci. Lett., 1992, vol. 11, p. 1570.CrossRefGoogle Scholar
  18. 18.
    Y.H. Zhou, M. Harrmelin, and J. Bigot: Scripta Metall., 1989, vol. 23, p. 1391.CrossRefGoogle Scholar
  19. 19.
    M.H. Tikkanen, B.O. Rosell, and O. Wiberg: Powder Metall., 1962, vol. 10, p. 49.Google Scholar
  20. 20.
    H. Scher and R. Zallen: J. Chem. Phys., 1970, vol. 53, p. 759.CrossRefGoogle Scholar

Copyright information

© ASM International 2000

Authors and Affiliations

  • K. E. Mohamed
    • 1
  • H. P. Buchkremer
    • 2
  • D. Stover
    • 2
  1. 1.Metallurgy DepartmentAtomic Energy AuthorityCairoEgypt
  2. 2.Institute for Materials in Energy Systems, Forschungszentrum JülichJülichGermany

Personalised recommendations