Journal of Phase Equilibria

, 20:508 | Cite as

The 1100 °C isothermal section of the Ti-Ni-Si ternary system

  • X. Hu
  • G. Chen
  • C. Ion
  • K. Ni
Basic And Applied Research


The isothermal section of the Ti-Ni-Si ternary system at 1100 °C was constituted. Twenty-one single-phase areas were determined. The binary Ti3Si phase proposed to occur at 1100 °C was not found in the investigation. A new phase, with the composition of NiTi4Si4 named H, was detected. Some of the ternary compounds show noticeable composition ranges, especially G′-Ni3Ti2Si.


Composition Range TiNi Isothermal Section Ternary Compound Scanning Electron Microscopy Microstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J.H. Westbrook, R.K. Di Cerbo, and A.J. Peat, Rep. 58-rc-2117, General Electronic Research Laboratory, 1958Google Scholar
  2. 2.
    V.Ya. Markiv, E.I. Gladyshevskii, P.I. Kripyakevich, and T.I. Fedouk, Inorganic Mater., TR: Izv. Akad. Nauk SSSR, Neorgan. Mater, Vol 2 (No. 7), 1966, p 1126Google Scholar
  3. 3.
    K.J. Williams, J. Inst. Met., Vol 99, 1971, p 310Google Scholar
  4. 4.
    H.J. Beattie, Jr. and F.L. Ver Snyder, Nature, Vol 178, 1956, p 20CrossRefGoogle Scholar
  5. 5.
    H.J. Beattie, Jr. and W.C. Hagel, Trans. Met. Soc. AIME, Vol 209, 1957, p 911Google Scholar
  6. 6.
    E.I. Gladyshevskii, Sov. Powder Metall. Met. Ceram., Vol 1, 1962, p 262CrossRefGoogle Scholar
  7. 7.
    D.I. Bardos, K.P. Gupta, and PA. Beck, Trans. Met. Soc. AIME, Vol 221, 1961, p 1087Google Scholar
  8. 8.
    J. Steinmets, J.-M. Albrecht, and B. Malaman, C.R. Hebd. Seánces Acad. Sci., Ser. C, Sci. Chem., Vol 279C, 1974, p 1119Google Scholar
  9. 9.
    W. Jeitschko, A.G. Jordan, and PA. Beck, Trans. Met. Soc. AIME, Vol 245, 1969, p 335Google Scholar
  10. 10.
    F.X. Spiegel, D.I. Bardos, and PA. Beck, Trans. Met. Soc. AIME, Vol 227, 1963, p 575Google Scholar
  11. 11.
    C.B. Shoemaker and D.P Shoemaker, Acta Crystallogr., Vol 18, 1965, p 900CrossRefGoogle Scholar
  12. 12.
    L.S. Hung and J.W. Mayer, J. Appl. Phys., Vol 60 (No.3), 1986, p 1002CrossRefADSGoogle Scholar
  13. 13.
    X. Hu, Y. Liu, G. Chen, and K. Ni, J. Mater. Sci. Technol., Vol 14 (No.2), 1998, p 121Google Scholar
  14. 14.
    J.L. Murray, Phase Diagrams of Titanium Alloys, ASM International, 1987Google Scholar
  15. 15.
    P. Nash and A. Nash, in Binary Alloy Phase Diagrams, American Society for Metals, 1986, p 1755Google Scholar
  16. 16.
    M. Hansen, H.D. Kessler, and D.J. McPherson, Trans. ASM, Vol 44, 1952, p 518Google Scholar
  17. 17.
    V.N. Svechnikov, Yu.A. Kocherzhisky, and L.M. Yupko, Dokl. Akad. Nauk SSSR, Vol 193 (No. 2), 1970, p 393Google Scholar
  18. 18.
    H.J. Seifert, H.L. Lukas, and G. Petzow, Z. Metallkde., Vol 87 (No. 1), 1996, p 2Google Scholar
  19. 19.
    O. Schob, H. Nowotny, and F. Benesovsky, Pulver-metall., Vol 10, 1962, p 65Google Scholar
  20. 20.
    W. Rossteutscher and K. Schubert, Z. Metallkde., Vol 56, 1965, p 813Google Scholar
  21. 21.
    J.J. Nickl and H. Sprenger, Z. Metallkde., Vol 60, 1969, p 136Google Scholar
  22. 22.
    J.J. Nickl and K.K. Schweitzer, Z. Metallkde., Vol 61, 1970, p 54Google Scholar
  23. 23.
    W.J.J. Wakelkamp, F.J.J. van Loo, and R. Metselaar, J. Eur. Ceram. Soc, Vol 8, 1991, p 135CrossRefGoogle Scholar
  24. 24.
    W. Buher, R. Gotthardt, A. Kulik, O. Mercier, and F. Staub, J. Phys., F: Met. Phys., Vol 13, 1983, p L77Google Scholar
  25. 25.
    X. Hu, G. Chen, and K. Ni, J. Univ. Sci. Technol. Beijing (English ed.), Vol 4 (No. 3, 5), 1997, p 5Google Scholar

Copyright information

© ASM International 1999

Authors and Affiliations

  • X. Hu
    • 1
  • G. Chen
    • 1
  • C. Ion
    • 1
  • K. Ni
    • 1
  1. 1.State Key Lab for Advanced Metals and MaterialsUniversity of Science and TechnologyBeijingChina

Personalised recommendations