Enthalpies of formation of AlNi: Experiment versus theory


The thermodynamic properties of theB2 AlNi phase have been revisited with calorimetric and a priori theoretical estimates of the enthalpy of formation of the stoichiometric compound. The calorimetric study has surveyed the temperature dependence of the enthalpy of formation and extrapolated it to zero temperature (for which the a priori estimates have been made), while the theoretical estimate explores the consequences of an apparent error in local density-based potentials in yielding the magnetic contribution to the reference energy of Ni metal. The present experimental value, extrapolated to 0 K, is 65.915 kJ/g-atom while the local density-based calculated value is 67.5 kJ/g-atom. These are in accord with each other and with much, but not all, the previous experimental data. An estimate of the error in the local density magnetic energy was made by comparing experimental and calculated heats for nonmagnetic Fe compounds, where the energy and its associated error are much larger, and scaling the result to Ni. This yields a “corrected” theoretical heat of 66 kJ/g-atom.

This is a preview of subscription content, access via your institution.

Cited References

  1. 33 Noe:

    R.D. Noebe, R.R. Bowman, and M.V. Nathal,Int. Met. Rev,9 (1933).

  2. 37Bra:

    A.J. Bradley and A. Taylor,Proc. R. Soc. (London) A, 159, 56 (1937).

    Article  ADS  Google Scholar 

  3. 55Kub:

    O. Kubaschewski and A. Dench,Acta Metall, 3, 339 (1955).

    Article  Google Scholar 

  4. 61Tro:

    V. A. Troshkina and K.G. Khomyakov,Russ. J. Inorganic Chem., 6, 1233 (1961).

    Google Scholar 

  5. 71San:

    V.M. Sandakov, Y.O. Esin, and P.V. Gel’d,Russ, J. Phys. Chem., 45, 1020 (1971).

    Google Scholar 

  6. 72vonB:

    U. von Barth and L. Hedin,J. Phys. Chem. 5, 1629 (1972).

    Google Scholar 

  7. 74Esk:

    V.M. Es’kov, V.V. Samokhval, and A.A. Vecher,Russ. Metall., 2, 118(1974).

    Google Scholar 

  8. 74Dan:

    H.-D. Dannohl and H.L. Lukas,Z Metallkd., 65, 642 (1974).

    Google Scholar 

  9. 75Hen:

    E.-Th. Henig and H.L. Lukas,Z Metallkd., 66, 98 (1975).

    Google Scholar 

  10. 80Som:

    F. Sommer, J. J. Lee, and B. Predel,Z. Metollkd., 71, 818(1980).

    Google Scholar 

  11. 81 Wim:

    E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman,Phys. Rev. B, 24, 864(1981).

    Article  ADS  Google Scholar 

  12. 85Lee:

    J. J. Lee and F. Sommer,Z. Metallkd., 76, 750 (1985).

    Google Scholar 

  13. 86Min:

    B. I. Min, T. Oguchi, H. J. F. Jansen, and A. J. Freeman,J. Magn. Magn. Mater., 54–57, 1091 (1986).

    Article  Google Scholar 

  14. 87Des:

    P. D. Desai,J. Phys. Chem. Ref. Data, 16, 109 (1987).

    ADS  Google Scholar 

  15. 88Ans:

    I. Ansara, B. Sundman, and P. Willemin,Acta Metall., 36, 977 (1988).

    Article  Google Scholar 

  16. 89 Bag:

    P. Bagno, O. Jepsen, and O. Gunnarsson,Phys. Rev. B 40, 1997 (1989).

    Article  ADS  Google Scholar 

  17. 89Bar:

    I. Barin, F. Sauert, E. Schultze-Rhonhof, and W.S. Sheng,Thermochemical Data of Pure Elements, Part 1, VCH Verlagsgesellschaft, Weinheim, Germany, Vol. 17, 1052 (1989).

    Google Scholar 

  18. 89Fer:

    G. W. Fernando, J. W. Davenport, R. E. Watson, and M. Weinert,Phys. Rev. B 40, 2757 (1989).

    Article  ADS  Google Scholar 

  19. 90Kek:

    S. Kek, K. Rzyman, and F. Sommer,An. Fis., b, 86, 31 (1990).

    Google Scholar 

  20. 91Bur:

    B. P. Burton, J. E. Osburn, and A. Pasturel,In High Temperature Ordered Intermetallic Alloys IV, L.A. Johnson et al., Ed., Materials Research Society, Pittsburgh, PA, 107 (1991).

    Google Scholar 

  21. 91Lu:

    Z. W. Lu, S.-H. Wei, A. Zunger, S. Frota-Pessoa, and L. G. Ferreira,Phys. Rev. B, 44, 512 (1991).

    Article  ADS  Google Scholar 

  22. 91Nas:

    P. Nash, M. P. Singleton, and J. L. Murray,Phase Diagrams of Binary Nickel Alloys, P. Nash, Ed., ASM International, Materials Park, OH, 3 (1991).

    Google Scholar 

  23. 92Bur:

    B. P. Burton, J. E. Osburn, and A. Pasturel,Phys. Rev. B, 45, 7677 (1992).

    Article  ADS  Google Scholar 

  24. 92Linl:

    W. Lin, J. -H.Xu, and A. J. Freeman,J. Mater.Res., 7, 592(1992).

    Article  ADS  Google Scholar 

  25. 92Lin2:

    W. Lin and A. J. Freeman,Phys Rev. B, 45, 61 (1991).

    Article  ADS  Google Scholar 

  26. 92Pas:

    A. Pasturel, M. Colinet, A. T. Paxton, and M. van Schilfgaarde,J. Cond. Matter Phys., 4, 945 (1992).

    Article  ADS  Google Scholar 

  27. 92Sch:

    P. A. Schultz and J. W. Davenport,Scr. Metall. Mater, 27, 620 (1992).

    Article  Google Scholar 

  28. 92Wan:

    J. Wang and H.-J. Engell,Steel Res., 65, 320 (1992).

    Google Scholar 

  29. 93Oka:

    H. Okamoto,J. Phase Equilibria, 14, 14 (1993).

    Article  Google Scholar 

  30. 93Rzy:

    K. Rzyman, Z. Moser, and B. Kiecka,Arch. Metall, 38, 18 (1993).

    Google Scholar 

  31. 94Mes:

    S. V. Meschel and O. J. Kleppa,Metallic Alloys: Experimental and Theoretical Perspectives, S. S. Faulkner, Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands (inpress).

  32. 96Du:

    Y. Du and N. Clavaguera,J. Alloys. Compd, 237, 20 (1996).

    Article  Google Scholar 

  33. 96Rzyl:

    K. Rzyman and Z. Moser, “Influence of the Ternary Additions on the Formation Enthalpy of Ni3Al-Based Alloys”, Calphad XXV, (Erice, Italy), Meeting Programme and Abstracts 15.4, 26–31 May 1996.

  34. 96Rzy2:

    K. Rzyman, Z. Moser, R. E. Watson, and M. Weinert,J. Phase Equilibria, 77(3), 173(1996).

    Article  Google Scholar 

  35. 96Gru:

    A. Grün, Doctor’s Thesis, Institut für Metallkunde der Universitat Stuttgart, Max-Planck-Institut für Metaltforschung Stuttgart (1996).

  36. 98Wat:

    submitted for publication.

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rzyman, K., Moser, Z., Watson, R.E. et al. Enthalpies of formation of AlNi: Experiment versus theory. JPE 19, 106 (1998). https://doi.org/10.1361/105497198770342562

Download citation


  • Enthalpy
  • AlNi
  • Excess Entropy
  • Entire Composition Range
  • Calphad Method