Journal of Phase Equilibria

, Volume 19, Issue 4, pp 317–333 | Cite as

A thermodynamic assessment of the Al-Cu-Mg ternary system

  • T. Buhler
  • S. G. Fries
  • P. J. Spencer
  • H. L. Lukas
Section I: Basic and Applied Research


A thermodynamic assessment of the Al-Cu-Mg ternary system is presented. The Gibbs energies for the liquid and solid solution phases were modeled using the Redlich-Kister polynomial and the Wagner-Schottky model represented by the compound-energy formalism. The model parameters were obtained after fitting to previously critically assessed experimental phase diagram and thermodynamic data available in the literature. The thermodynamic functions and phase diagram calculated using the model parameters describe quite well the known experimental information. The complete set of Gibbs energies for all phases appearing in this system enables the calculation of thermodynamic values as a function of composition and temperature even for those ranges where no experimental information is available.


Gibbs Energy Lave Phase Homogeneity Range Invariant Equilibrium Solubility Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Cited References

  1. 1.
    M.H.G. Jacobs and PJ. Spencer,J. Alloy. Comp. 220, 15 (1995).CrossRefGoogle Scholar
  2. 2.
    H. Feufel, T. Gödecke, H.L. Lukas, and F. Sommer,J. Alloy. Compd, 247, 31 (1997).CrossRefGoogle Scholar
  3. 3.
    S. Chen, Ph.D. thesis, University of Wisconsin-Madison (1994).Google Scholar
  4. 4.
    D. Soares, L.F. Malheiros, M. HÄmÄlÄinen, and F. Castro,J. Alloy. Compd., 220, 179 (1995).CrossRefGoogle Scholar
  5. 5.
    Y.B. Kim, F. Sommer,and B. Predel,Z Metallkd., 86, 597 (1995).Google Scholar
  6. 6.
    A. Prince and G. Effenberg, Aluminium-Copper-Magnesium,Ternary Alloys, G. Petzow and G. Effenberg, Ed., Vol. 4, VCH Verlagsges., Weinheim, 547 (1991).Google Scholar
  7. 7.
    N. Saunders, private communication (1992).Google Scholar
  8. 8.
    N. Saunders,CALPHAD, 14,61 (1990), with revision by the author.Google Scholar
  9. 9.
    C.A. Coughanowr, I. Ansara, R. Luoma, M. HÄmÄlÄinen, and H.L. Lukas,Z Metallkd., 82, 574 (1991), with revision by the authors.Google Scholar
  10. 10.
    H.W. Phillips,J. Inst. Metals, 25, 27 (1959).Google Scholar
  11. 11.
    A.I. Beljaew,Metallovedenic Aluminija, Metallurgia, Moscow, 73 (1983).Google Scholar
  12. 12.
    Y.A. Chang, J.P. Neumann, A. Mikula, and D. Goldberg,Phase Diagrams and Thermodynamic Properties of Ternary Copper-Metal Systems, INCRA Monograph Series VI, 175(1979).Google Scholar
  13. 13.
    E.K. Rodionova, N.M. Martynova, and L.J. Cherneeva,Zh. Fiz. Khim., 6, 1382(1986).Google Scholar
  14. 14.
    Y. Zuo and Y. A. Chang,light Metals, S.K. Das, Ed., Minerals, Metals & Materials Society, 935 (1993).Google Scholar
  15. 15.
    C.C. Huang and S.W. Chen,Met. Mater. Trans., 26A, 1007 (1995).CrossRefGoogle Scholar
  16. 16.
    B. Predel and H. Ruge,Mater. Sci. Eng., 9, 141 (1972).CrossRefGoogle Scholar
  17. 17.
    D. Farkas and C.E. Birchenall,Metall. Trans. A, 16A, 323 (1985).ADSGoogle Scholar
  18. 18.
    M. Notin, M. Dirand, D. Bouaziz, and J. Hertz,C.R. Acad. Sci. Paris, 302, 63 (1986).Google Scholar
  19. 19.
    M.I. Zamotonn,Lenin Pol. Inst., Trudy, 18032(1955).Google Scholar
  20. 20.
    D.A. Petrow and G.S. Berg,Zh. Fiz. Khim, 20, 1475 (1946).Google Scholar
  21. 21.
    G.G. Urazov and M.S. Mirgalovskaya,Izv. Sekt. Fiz. Khim. Anal., 79, 514(1949).Google Scholar
  22. 22.
    E.V. Melnik and V.V. Kinzhibalo,Russ.Metall., 3, 154(1981).Google Scholar
  23. 23.
    F. Laves and H. Witte,Metallwirtschaft, 15, 15–22 (1936).Google Scholar
  24. 24.
    T. Buhler, S.G. Fries, P.J. Spencer, and H.L. Lukas,J. Chim. Phys., 94, 1043 (1997).Google Scholar
  25. 25.
    G. Bergman, J.L.T. Waugh, and L. Pauling,Acta Crystallogr., 10, 254(1957).CrossRefGoogle Scholar
  26. 26.
    P. Villars and L.D. Calvert,Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, Vol. 1, ASM International, Materials Park, OH, 745 (1985).Google Scholar
  27. 27.
    I. Ansara,CODATA 94, Elsevier, Amsterdam (1996).Google Scholar
  28. 28.
    A.T. Dinsdale,Calphad, 15, 317 (1991).CrossRefGoogle Scholar
  29. 29.
    O. Redlich and A. Kister,Ind. Eng. Chem., 40, 345 (1948).CrossRefGoogle Scholar
  30. 30.
    Y.-M. Muggianu, M. Gambino,and J.-P. Bros,J. Chim. Phys., 72, 83 (1975).Google Scholar
  31. 31.
    C. Wagner,Thermodynamics of Alloys, Addison-Wesley, Cambridge, MA (1952).Google Scholar
  32. 32.
    I. Ansara, private communication.Google Scholar
  33. 33.
    P. Liang, H.L. Lukas, H.J. Seifert, and F. Aldinger, Proc. ofCAL-PHADXXVI, Palm Coast, 10, May 1997.Google Scholar
  34. 34.
    B. Sundman, B. Jansson, and J.-O. Andersson,Calphad, 9, 153 (1985).CrossRefGoogle Scholar
  35. 35.
    H. Nishimura,Mem Coll. Eng., Kyoto Imp. Univ., 10, 18 (1937).Google Scholar
  36. 36.
    H. Nishimura,Mem Coll. Eng., Kyoto Imp. Univ., 10, 117(1938).Google Scholar
  37. 37.
    H. Hanemann and A. Schrader, Aluminium-Cupfer-Magnesium,TernÄre Legierungen des Aluminiums, Verlag Stahleisen, Düsseldorf, 73 (1952).Google Scholar
  38. 38.
    G.G. Urazov and D.A. Petrov,Zh. Fiz. Khim., 20, 387 (1946).Google Scholar

Copyright information

© Springer 1998

Authors and Affiliations

  • T. Buhler
    • 1
  • S. G. Fries
    • 1
  • P. J. Spencer
    • 1
  • H. L. Lukas
    • 2
  1. 1.Lehrstuhl Βir Theoretische HüttenkundeAachenGermany
  2. 2.Max-Planck-Institutfür Metallforschung PMLStuttgartGermany

Personalised recommendations