Journal of Phase Equilibria and Diffusion

, Volume 27, Issue 1, pp 83–91 | Cite as

Thermodynamic evaluation of the phase equilibria and glass-forming ability of the Ti−Be system

  • Tatsuya Tokunaga
  • Hiroshi Ohtani
  • Mitsuhiro Hasebe
Basic and Applied Research: Section I


The glass-forming ability of Ti−Be alloys is of great interest. Experimental and theoretical evaluations of the glass-forming ability of this binary alloy show that the formation of a metastable TiBe phase with a CsCl-type B2 structure controls the glass-forming ability in this system. However, there is no information on the thermochemical properties of metastable TiBe for the quantitative evaluation of the glass-forming ability using Davies-Uhlmann kinetic formulations. We have carried out a thermodynamic analysis using experimental phase diagram data and the energy of formation of the stoichiometric compounds from ab initio calculations. Furthermore, the Gibbs energy of formation for the body-centered cubic (bcc) phase was evaluated over the entire composition range by applying the cluster expansion method (CEM) to the total energy of some bcc-based ordered structures obtained from ab initio calculations. For the bcc phase, the two-sublattice formalism, (Ti, Be)0.5(Ti,Be)0.5, was adopted to describe the A2/B2 transformation. A good agreement between the calculated values and experimental phase equilibria was obtained. Evaluation of the glass-forming ability was also attempted utilizing the thermodynamic quantities obtained from the phase diagram assessment. The calculated glass-forming ability agrees well with the experimental results.


ab initio calculations CALPHAD entropy of fusion glass-forming ability metastable phase equilibria titanium-beryllium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1948Red: O. Redlich and A.T. Kister, Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Ind. Eng. Chem., 1948, 40, p 345–348CrossRefGoogle Scholar
  2. 1950Tur: D. Turnbull, Formation of Crystal Nuclei in Liquid Metals, J. Appl. Phys., 1950, 21, p 1022–1028CrossRefADSGoogle Scholar
  3. 1951Kik: R. Kikuchi, A Theory of Cooperative Phenomena, Phys. Rev., 1951, 81, p 988–1003MATHCrossRefADSMathSciNetGoogle Scholar
  4. 1960Bed: R.G. Bedford, U.S. Atomic Energy Comm., UCRL-5991-T, 1960Google Scholar
  5. 1960Pai: R.M. Paine and J.A. Carrabine, Some New Intermetallic Compounds of Beryllium, Acta Crystallogr., 1960, 13, p 680–681CrossRefGoogle Scholar
  6. 1961Gla: E.I. Gladyshevski, P.I. Kripyakevich, M.Yu. Teskyuk, O.S. Zarechnyuk, and Yu.B. Kuz'ma, Crystal Structures of Some Intermetallic Compounds, Kristallografiya, 1961, 6, p 267–268 (in Russian); translated in Sov. Phys. Crystallogr., 1961, 6, p 207–208Google Scholar
  7. 1961Zal: A. Zalkin, D. Sands, R.G. Bedford, and O.H. Krikorian, The Beryllides of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, Acta Crystallogr., 1961, 14, p 63–64CrossRefGoogle Scholar
  8. 1962Obi: I. Obinata, K. Kurihara, and M. Shimura, A Study of Ti−Be Alloys. Titanium & Zirconium, 1962, 10, p 160–166, in JapaneseGoogle Scholar
  9. 1964Gil: E. Gillam and H.P. Rooksby. Strucural Relationships in Beryllium-Titanium Alloys. Acta Crystallogr., 1964, 17, p 762–763CrossRefGoogle Scholar
  10. 1965Ell: R.P. Elliot, Constitution of Binary Alloys, First Supplement, McGraw-Hill, New York, 1965, p 172–173Google Scholar
  11. 1966Hun: D.B. Hunter, The Titanium-Beryllium Phase Diagram up to 10 wt.% Be, Trans. AIME, 1966, 236, p 900–920Google Scholar
  12. 1967Rob: M. Robinson and M. Bever, Thermodynamic Properties in Intermetallic Compounds, H. Westbrook, Ed., Wiley, New York, 1967, p 67Google Scholar
  13. 1970Hil: M. Hillert and L-I. Staffansson, The Regular Solution Model for Stoichiometric Phases and Ionic Melts. Acta Chem. Scand., 1970, 24, p 3618–3626CrossRefGoogle Scholar
  14. 1972Uhl: D.R. Uhlmann, A Kinetic Treatment of Glass Formation, J. Non-Cryst. Solids, 1972, 7, p 337–348CrossRefADSGoogle Scholar
  15. 1973Kau: L. Kaufman and H. Nesor, Phase Stability and Equilibria as Affected by the Physical Properties and Electronic Structure of Titanium Alloys, Titanium Science and Technology, R.I. Jaffee and H.M. Burte, Ed., Plenum Press, Cambridge, MA, 1973, 2, p 773–800Google Scholar
  16. 1976Dav: H.A. Davies, The Formation of Metallic Glasses, Phys. Chem. Glasses, 1976, 17, p 159–173Google Scholar
  17. 1977Ram: P. Ramachandrarao, B. Cantor, and R.W. Cahn, Free Volume Theories of the Glass Transition and the Special Case of Metallic Glasses, J. Mater. Sci., 1977, 12, p 2488–2502CrossRefADSGoogle Scholar
  18. 1978Tan: L.E. Tanner and B.C. Giessen, Structure and Formation of the Metastable Phase m-TiBe. Metall. Trans. A, 1978, 9A, p 67–69ADSGoogle Scholar
  19. 1979Kau: L. Kaufman and L.E. Tanner, Coupled Phase Diagrams and Thermochemical Descriptions of the Titanium-Beryllium, Zirconium-Beryllium and Hafnium-Beryllium Systems, Calphad, 1979, 3, p 91–107CrossRefGoogle Scholar
  20. 1979Tan: L.E. Tanner and R. Ray, Metallic Glass Formation and Properties in Zr and Ti Alloyed with Be-1, The Binary Zr−Be and Ti−Be Sysytems, Acta Metall., 1979, 27, p 1727–1747CrossRefGoogle Scholar
  21. 1980Tan: L.E. Tanner and R. Ray, Phase Separation in Zr−Ti−Be Metallic Glasses, Scripta Metall., 1980, 14, p 657–662CrossRefGoogle Scholar
  22. 1981Mas: T.B. Massalski, Relationships Between Metallic Glass Formation and Phase Diagrams, Proc. 4 th Int. Conf. on Rapidly Quenched Metals, T. Masumoto and K. Suzuki, Ed., Japan Inst. Metals. Sendai, Japan, 1981, p 203–208Google Scholar
  23. 1983Con: J.W.D. Connolly and A.R. Williams, Density-Functional Theory Applied to Phase Transformations in Transition-Metal Alloys, Phys. Rev., 1983, B27, p 5169–5172.ADSGoogle Scholar
  24. 1985Sau: N. Saunders, A.P. Miodownik, and L.E. Tanner, Prediction of Glass forming range in Ternary Alloys From the Constituent Binary Systems. Proc. 5th Int. Conf. on Rapidly Quenched Metals, S. Steeb and H. Warlimont, Ed., Elsevier, Amsterdam, The Netherlands, 1985, p 191–194Google Scholar
  25. 1985Spr: B. Sprusil and H.W. Bergmann, Some Comments on Metallic Glasses, Proc. 5th Int. Conf. on Rapidly Quenched Metals, S. Steeb and H. Warlimont Ed., Elsevier, Amsterdam. The Netherlands, 1985, p 255–258Google Scholar
  26. 1987Mur: J.L. Murray: The Be-Ti System, Phase Diagrams of Binary Titanium Alloys, J.L. Murray, Ed., ASM International, 1987, p 40–43Google Scholar
  27. 1988Sau: N. Saunders and A.P. Miodownik, Evaluation of Glass Forming Ability in Binary and Ternary Metallic Alloy Systems—An Application of Thermodynamic Phase Diagram Calculations, Mater. Sci. Technol., 1988, 4, p 768–777Google Scholar
  28. 1990Bla: P. Blaha, K. Schwarz, P. Sorantin, and S.B. Trickey, Full-Potential, Linearized Augmented Plane Wave Programs for Crystalline Systems, Comput. Phys. Commun., 1990, 59, p 399–415CrossRefADSGoogle Scholar
  29. 1991Din: A.T. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15, p 317–425CrossRefGoogle Scholar
  30. 1996Per: J.P. Perdew, K. Burke, and Y. Wang, Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System, Phys. Rev., 1996, B54, p 16533–16539CrossRefGoogle Scholar
  31. 1996Slu: M.H.F. Sluiter, Y. Watanabe, D. de Fòntaine, and Y. Kawazoe: First-Principles Calculation of the Pressure Dependence of Phase Equilibria in the Al-Li System. Phys. Rev., 1996, 53B, p 6137–6151ADSGoogle Scholar
  32. 1997Vil: P. Villars, Pearson's Handbook: Crystallographic Data for Intermetallic Phases Vol. 1, ASM International, 1997, p 896–897Google Scholar
  33. 1998Ino: A. Inoue, Bulk Amorphous Alloys— Preparation and Fundamental Characteristics, Materials Science Foundation 4, Trans Tech Publications, The Netherlands, 1998, p 1–116Google Scholar
  34. 1999Zho: S.H. Zhou, J. Schmid, and F. Sommer, Thermodynamic Properties of Liquid, Undercooled Liquid and Amorphous Al−Cu−Zr and Al−Cu−Ni−Zr Alloys, Thermochim. Acta, 1999, 339, p 1–9CrossRefGoogle Scholar
  35. 2000Tol: O. Tolochko and J. Ågren, Thermodynamic Properties of Supercooled Fe−B Liquids—A Theoretical and Experimental Study. J. Phase Equilib., 2000, 21, p 19–24CrossRefGoogle Scholar
  36. 2000Tol: G. Shao, Prediction of Amorphous Phase Stability in Metallic Alloys, J. Appl. Phys., 2000, 88, p 4443–4445CrossRefADSGoogle Scholar
  37. 2001Liu: Y.Q. Liu, G. Shao, and K.P. Homewood, Prediction of Amorphous Phase Stability in the Metal-Silicon Systems. J. Appl. Phys., 2001, 90, p 724–727CrossRefADSGoogle Scholar
  38. 2003Ohn: I. Ohnuma, R. Kainuma, M. Uda, T. Iwadachi, M. Uchida, U. Kawamura, and K. Ishida, Phase Equilibria in the Be−V and Be−Ti Binary Systems, Proc. of the 6th Intnl. Workshop on Beryllium Technology for Fusion, JAERI-Conf. 2004–2006, Japan Atomic Energy Research Institute, Japan, 2004, p 172–183Google Scholar
  39. 2003Sch: K. Schwarz and P. Blaha, Solid State Calculations Using WIEN2k, Comp. Mater. Sci., 2003, 28, p 259–273CrossRefGoogle Scholar
  40. 2004Kaw: H. Kawamura, H. Takahashi, N. Yoshida, Y. Mishima, K. Ishida, T. Iwadachi, A. Cardella, J.G. van der Laan, M. Uchida, K. Munakata, Y. Sato, V. Shestakov, and S. Tanaka, Present Status of Beryllide R&D as Neutron Multiplier. J. Nucl. Mater., 2004, 329–333, p 112–118CrossRefGoogle Scholar

Copyright information

© ASM International 2006

Authors and Affiliations

  • Tatsuya Tokunaga
    • 1
  • Hiroshi Ohtani
    • 1
    • 2
  • Mitsuhiro Hasebe
    • 1
    • 2
  1. 1.Core Research for Evolutional Science and Technology (CREST)Japan Science and Technology AgencyKitakyushuJapan
  2. 2.Department of Materials Science and EngineeringKyushu Institute of TechnologyKitakyushuJapan

Personalised recommendations