Journal of Phase Equilibria

, Volume 24, Issue 6, pp 511–527 | Cite as

Constitution of the ternary system Al-Ru-Ti (Aluminum-Ruthenium-Titanium)

  • A. Grytsiv
  • P. Rogl
  • H. Schmidt
  • G. Giester
Basic And Applied Research


Phase relations in the ternary system Al-Ru-Ti were studied on arc-melted alloys and specimens annealed at 1100 °C, 950 °C, and 800 °C employing optical and electron microscopy, x-ray diffraction, and electron probe microanalysis. The results, in combination with an assessment of all literature data available, were used to construct liquidus and solidus surfaces, a series of isothermal sections, and a Schulz-Scheil diagram monitoring solidification (crystallization) in thermodynamic equilibrium. The crystal structure of the ternary G-phase was determined by x-ray single crystal diffraction to be a filled variant of the Th6Mn23-type (space group Fm3m). Furthermore, a new ternary compound with AuCu3-type structure was detected.


Phase Equilibrium Isothermal Section Ternary Compound AuCu Invariant Reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1966Gan:.
    E. Ganglberger, H. Nowotny, and F. Benesovsky: “New G-Phases (Short Communication),” Monatsh. Chem., 1966, 97, pp. 829–32 (in German).CrossRefGoogle Scholar
  2. 1974Spi:.
    T.A. Spitsyna, M.V. Raevskaya, V. Ya. Markiv, and E.M. Sokolovskaya: “Formation and Properties of New Phases in the (Zr,Ti)-Ru-Al Systems” in Tezisy Dokl. Vses. 2nd. Konf. Kristallokhim. Intermet. Soedin., Lvov. Gos. Univ., Lvov, U.S.S.R., 1974, p. 121 (in Russian).Google Scholar
  3. 1979Rae:.
    M.V. Raevskaya and E.M. Sokolovskaya: “Systems Ruthenium-Aluminium-Transitional Metal of IV Group” in Physical Chemistry of Ruthenium and Its Alloys, Moscow University Press, Moscow, 1979, pp. 99–103 (in Russian).Google Scholar
  4. 1988Kha:.
    A. Khataee, H.M. Flower, and D.R.F. West: “New Titanium — Aluminium — X Alloys for Aerospace Applications,” J. Mater. Eng., 1988, 10, pp. 37–44.CrossRefGoogle Scholar
  5. 1989Kha1:.
    A. Khataee, H.M. Flower, and D.R.F. West: “The Alloying of Titanium Aluminides with Ruthenium,” Platinum Metals Rev., 1989, 33(3), pp. 106–13.Google Scholar
  6. 1989Kha2:.
    A. Khataee, H.M. Flower, and D.R.F. West: “Constitution of Ti-Al-Ru System,” Mater. Sci. Technol., 1989, 5(7), pp. 632–43.Google Scholar
  7. 1989Kha3:.
    A. Khataee, H.M. Flower, and D.R.F. West: “Solid State Phase Transformations in Ti-Al-Ru System,” Mater. Sci. Technol., 1989, 5(9), pp. 873–81.Google Scholar
  8. 1990Mas:.
    T.B. Massalski: Binary Alloy Phase Diagrams, 2nd ed., ASM International, Metals Park, OH, 1990.Google Scholar
  9. 1990Sch:.
    J.C. Schuster and H. Ipser: “Phases and Phase Relations in the Partial System TiAl3-iAl,” Z. Metallkd., 1990, 81(6), pp. 389–96.Google Scholar
  10. 1991Spa:.
    C.J. Sparks, W.D. Porter, J.H. Schneibel, W.C. Oliver, and C.G. Goleg, “Formation of Cubic L12 Al3Ti and Al3Zr by Transitional Metal Substitutions for Al,” Mater. Res. Soc. Symp. Proc., 1991, 186, pp. 175–80.Google Scholar
  11. 1991Vil:.
    P. Villars and L.D. Calvert: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., ASM International, Metals Park, OH, 1991.Google Scholar
  12. 1992Kat:.
    U.R. Kattner, J.-C. Lin, and Y.A. Chang: “Thermodynamic Assessment and Calculation of the Ti-Al System,” Metall. Trans. A, 1992, 23A, pp. 2081–90.ADSGoogle Scholar
  13. 1993Fle:.
    R.L. Fleischer: “Substitutional Solutes in AlRu. I. Effects of Solute on Moduli, Lattice Parameters and Vacancy Production,” Acta Metall. Mater., 1993, 41(3), pp. 863–69.CrossRefMathSciNetGoogle Scholar
  14. 1993Nak:.
    Y. Nakayama and H. Mabushi: “Formation of Ternary L12 Compounds in Al3Ti-Base Alloys,” Intermetallics, 1993, 1, pp. 41–48.CrossRefGoogle Scholar
  15. 1993Pet:.
    Yu. I. Petrov: “Aluminium-Ruthenium-Titanium” in Ternary Alloys: a Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, VCH Verlagsgesellschaft, Weinheim, Germanyand VHC Publishers, New York, NY, USA, 1993, 8, pp. 179–84.Google Scholar
  16. 1994Bra:.
    J. Braun, M. Ellner, and B. Predel: “Splat Cooling Investigations in the Binary System Ti-Al,” Z. Metallkd., 1994, 85(12), pp. 855–62.Google Scholar
  17. 1994Par:.
    E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, and R. Gladyshevskii: TYPIX Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Springer-Verlag, Berlin, Heidelberg, 1994.Google Scholar
  18. 1997Kim:.
    S. Kim and G.D.W. Smith: “AP-FIM Investigation on γ-based Titanium Aluminides,” Mater. Sci. Eng., 1997, A239–240, pp. 229–34.Google Scholar
  19. 1997She:.
    G.M. Sheldrick: “SHELX-97, Program for Crystal Structure Refinement,” University of Göttingen, Germany; Windows version by McArdle, Natl. Univ. Ireland, Galway, Ireland, 1997.Google Scholar
  20. 1997Zha:.
    F. Zhang, S.L. Chen, Y.A. Chang, and U.R. Kattner: “A Thermodynamic Description of the Ti-Al System,” Intermetallics, 1997, 5, pp. 471–82.CrossRefGoogle Scholar
  21. 1998Non:.
    Nonius Kappa CCD Program Package COLLECT, DENZO, SCALEPACK, SORTAV. Nonius, Delft, The Netherlands, 1998.Google Scholar
  22. 1998Sch:.
    R.W. Schutz and H.B. Watkins: “Recent Developments in Titanium Alloy Application in the Energy Industry,” Mater. Sci. Eng., 1998, A243, pp. 305–15.Google Scholar
  23. 1999Din:.
    J.J. Ding, H. Schweiger, W. Wolf, P.F. Rogl, D. Vogtenhuber, and R. Podloucky: “Experimental Phase Equilibria γTiAl+α2Ti3Al+φ in Ternary Intermetallics Ti-M-Al and Calculated Trends of Ternary Substitutions in α2Ti3Al” in Gamma Titanium Aluminides-1999. Proceedings of Symposium held during the 1999 TMS Annual Meeting, TMS- Miner. Metals and Mater. Soc., San Diego, CA, USA, 1999, pp. 141–47.Google Scholar
  24. 1999Hun:.
    B. Huneau, P. Rogl, K. Zeng, R. Schmid-Fetzer, M. Bohn, and J. Bauer: “The Ternary System Al-Ni-Ti, Part I: Isothermal Section at 900°C; Experimental Investigation and Thermodynamic Calculation,” Intermetallics, 1999, 7, pp. 1337–45.CrossRefGoogle Scholar
  25. 1999Zen:.
    K. Zeng, R. Schmid-Fetzer, B. Huneau, P. Rogl, and J. Bauer: “The Ternary System Al-Ni-Ti, Part II: Thermodynamic Assessment and Experimental Investigation of Polythermal Phase Equilibria,” Intermetallics, 1999, 7, pp. 1347–59.CrossRefGoogle Scholar
  26. 2000Din1:.
    J.J. Ding, P. Rogl, H. Schmidt, and R. Podloucky: “Structure Chemistry and Constitution in TiAl-based Intermetallics,” Visn. Lvivsk, Univ.; Ser. Khim., 2000, 39C, pp. 136–41.Google Scholar
  27. 2000Din2:.
    J.J. Ding, P. Rogl, B. Chevalier, and J. Etourneau: “Structural Chemistry and Phase Relations in Intermetallic Systems Ti-{Pd,Pt}-Al,” Intermetallics, 2000, 8, pp. 1377–84.CrossRefGoogle Scholar
  28. 2000Kim:.
    S. Kim, D. Nguyen-Manh, G.D.W. Smith, and D.G. Pettifor: “Site Preference of Ru and Pd Additions to γ-Based TiAl Intermetallics,” Philos. Mag. A, 2000, 80(11), pp. 2489–508.CrossRefADSGoogle Scholar
  29. 2000Ohn:.
    I. Ohnuma, Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, and K. Ishida: “Phase Equilibria in the Ti-Al Binary System,” Acta Mater., 2000, 48, pp. 3113–23.CrossRefGoogle Scholar
  30. 2001Bra:.
    J. Braun and M. Ellner: “Phase Equilibria Investigations on the Aluminium-Rich Part of the Binary System Ti-Al,” Metall. Mater. Trans. A, 2001, 32A, pp. 1037–48.CrossRefGoogle Scholar
  31. 2001Lan1:.
    M.A. Langoy and S.R. Stock: “Fatigue-Crack Growth in Ti-6Al-4V-0.1Ru in Air and Seawater. I. Design of Experiments, Assessment, and Crack-Growth-Rate Curves,” Metall. Mater. Trans. A, 2001, 32(9), pp. 2297–314.CrossRefGoogle Scholar
  32. 2001Lan2:.
    M.A. Langoy and S.R. Stock: “Fatigue-Crack Growth in Ti-6Al-4V-0.1 Ru in Air and Seawater. II. Crack Path and Microstructure,” Metall. Mater. Trans. A, 2001, 32(9), pp. 2315–24.CrossRefGoogle Scholar
  33. 2001Roi:.
    T. Roisnel and J. Rodriguez-Carvajal: “WinPLOTR: a Windows Tool for Powder Diffraction Pattern Analysis,” Mater. Sci. Forum, 2001, 378–381(1), pp. 118–23.CrossRefGoogle Scholar
  34. 2002Cor:.
    L. Cornish: “A Critical Assessment of the Binary System Al-Ru” in MSIT Binary Evaluation Program, available via MSI workplace, MSIT-product, MSI-Stuttgart, 2002.Google Scholar
  35. 2002Ish:.
    K. Ishikawa, K. Hashi, K. Suzuki, and K. Aoki: “Hydrogen Absorption Properties of Ti3Al-based Ternary Alloys,” J. Alloys Compd., 2002, 330–332, pp. 543–46.CrossRefGoogle Scholar
  36. 2002Pal:.
    M. Palm, L.C. Zhang, F. Stein, and G. Sauthoff, “Phases and Phase Equilibria in the Al-rich Part of the Al-Ti System Above 950°C”, Intermetallics, 2002, 10, pp. 523–40.CrossRefGoogle Scholar
  37. 2002Rag:.
    V. Raghavan: “Al-Fe-Ti (Aluminium-Iron-Titanium),” J. Phase Equilib., 2002, 23(4), pp. 367–74.CrossRefMathSciNetGoogle Scholar
  38. 2002Sch:.
    R. Schmid-Fetzer, “A Critical Assessment of the Binary System Al-Ti” in MSIT Binary Evaluation Program, available via MSI workplace, MSIT-product, MSI-Stuttgart, 2002.Google Scholar
  39. 2003Gry:.
    A. Grytsiv, J.J. Ding, P. Rogl, F. Weill, B. Chevalier, J. Etourneau, G. André, F. Bourée, N. Noël, P. Hundegger, and H. Wiesinger, “Crystal Chemistry of the G-phases in the Systems Ti-{Fe, Co, Ni}-Al With a Novel Filled Variant of the Th6Mn23-type,” Intermetallics, 2003, 11, pp. 351–59.CrossRefGoogle Scholar

Copyright information

© ASM International 2003

Authors and Affiliations

  • A. Grytsiv
    • 1
  • P. Rogl
    • 1
  • H. Schmidt
    • 1
  • G. Giester
    • 2
  1. 1.Institut für Physikalische ChemieUniversität WienWienAustria
  2. 2.Institut für Mineralogie und KristallographieUniversität WienWienAustria

Personalised recommendations