Skip to main content
Log in

Constitution of the ternary system Al-Ru-Ti (Aluminum-Ruthenium-Titanium)

  • Basic And Applied Research
  • Published:
Journal of Phase Equilibria

Abstract

Phase relations in the ternary system Al-Ru-Ti were studied on arc-melted alloys and specimens annealed at 1100 °C, 950 °C, and 800 °C employing optical and electron microscopy, x-ray diffraction, and electron probe microanalysis. The results, in combination with an assessment of all literature data available, were used to construct liquidus and solidus surfaces, a series of isothermal sections, and a Schulz-Scheil diagram monitoring solidification (crystallization) in thermodynamic equilibrium. The crystal structure of the ternary G-phase was determined by x-ray single crystal diffraction to be a filled variant of the Th6Mn23-type (space group Fm3m). Furthermore, a new ternary compound with AuCu3-type structure was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Ganglberger, H. Nowotny, and F. Benesovsky: “New G-Phases (Short Communication),” Monatsh. Chem., 1966, 97, pp. 829–32 (in German).

    Article  Google Scholar 

  2. T.A. Spitsyna, M.V. Raevskaya, V. Ya. Markiv, and E.M. Sokolovskaya: “Formation and Properties of New Phases in the (Zr,Ti)-Ru-Al Systems” in Tezisy Dokl. Vses. 2nd. Konf. Kristallokhim. Intermet. Soedin., Lvov. Gos. Univ., Lvov, U.S.S.R., 1974, p. 121 (in Russian).

    Google Scholar 

  3. M.V. Raevskaya and E.M. Sokolovskaya: “Systems Ruthenium-Aluminium-Transitional Metal of IV Group” in Physical Chemistry of Ruthenium and Its Alloys, Moscow University Press, Moscow, 1979, pp. 99–103 (in Russian).

    Google Scholar 

  4. A. Khataee, H.M. Flower, and D.R.F. West: “New Titanium — Aluminium — X Alloys for Aerospace Applications,” J. Mater. Eng., 1988, 10, pp. 37–44.

    Article  Google Scholar 

  5. A. Khataee, H.M. Flower, and D.R.F. West: “The Alloying of Titanium Aluminides with Ruthenium,” Platinum Metals Rev., 1989, 33(3), pp. 106–13.

    Google Scholar 

  6. A. Khataee, H.M. Flower, and D.R.F. West: “Constitution of Ti-Al-Ru System,” Mater. Sci. Technol., 1989, 5(7), pp. 632–43.

    Article  Google Scholar 

  7. A. Khataee, H.M. Flower, and D.R.F. West: “Solid State Phase Transformations in Ti-Al-Ru System,” Mater. Sci. Technol., 1989, 5(9), pp. 873–81.

    Article  Google Scholar 

  8. T.B. Massalski: Binary Alloy Phase Diagrams, 2nd ed., ASM International, Metals Park, OH, 1990.

    Google Scholar 

  9. J.C. Schuster and H. Ipser: “Phases and Phase Relations in the Partial System TiAl3-iAl,” Z. Metallkd., 1990, 81(6), pp. 389–96.

    Google Scholar 

  10. C.J. Sparks, W.D. Porter, J.H. Schneibel, W.C. Oliver, and C.G. Goleg, “Formation of Cubic L12 Al3Ti and Al3Zr by Transitional Metal Substitutions for Al,” Mater. Res. Soc. Symp. Proc., 1991, 186, pp. 175–80.

    Article  Google Scholar 

  11. P. Villars and L.D. Calvert: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., ASM International, Metals Park, OH, 1991.

    Google Scholar 

  12. U.R. Kattner, J.-C. Lin, and Y.A. Chang: “Thermodynamic Assessment and Calculation of the Ti-Al System,” Metall. Trans. A, 1992, 23A, pp. 2081–90.

    Article  ADS  Google Scholar 

  13. R.L. Fleischer: “Substitutional Solutes in AlRu. I. Effects of Solute on Moduli, Lattice Parameters and Vacancy Production,” Acta Metall. Mater., 1993, 41(3), pp. 863–69.

    Article  MathSciNet  Google Scholar 

  14. Y. Nakayama and H. Mabushi: “Formation of Ternary L12 Compounds in Al3Ti-Base Alloys,” Intermetallics, 1993, 1, pp. 41–48.

    Article  Google Scholar 

  15. Yu. I. Petrov: “Aluminium-Ruthenium-Titanium” in Ternary Alloys: a Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, VCH Verlagsgesellschaft, Weinheim, Germanyand VHC Publishers, New York, NY, USA, 1993, 8, pp. 179–84.

    Google Scholar 

  16. J. Braun, M. Ellner, and B. Predel: “Splat Cooling Investigations in the Binary System Ti-Al,” Z. Metallkd., 1994, 85(12), pp. 855–62.

    Google Scholar 

  17. E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, and R. Gladyshevskii: TYPIX Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Springer-Verlag, Berlin, Heidelberg, 1994.

    Book  Google Scholar 

  18. S. Kim and G.D.W. Smith: “AP-FIM Investigation on γ-based Titanium Aluminides,” Mater. Sci. Eng., 1997, A239–240, pp. 229–34.

    Article  Google Scholar 

  19. G.M. Sheldrick: “SHELX-97, Program for Crystal Structure Refinement,” University of Göttingen, Germany; Windows version by McArdle, Natl. Univ. Ireland, Galway, Ireland, 1997.

    Google Scholar 

  20. F. Zhang, S.L. Chen, Y.A. Chang, and U.R. Kattner: “A Thermodynamic Description of the Ti-Al System,” Intermetallics, 1997, 5, pp. 471–82.

    Article  Google Scholar 

  21. Nonius Kappa CCD Program Package COLLECT, DENZO, SCALEPACK, SORTAV. Nonius, Delft, The Netherlands, 1998.

  22. R.W. Schutz and H.B. Watkins: “Recent Developments in Titanium Alloy Application in the Energy Industry,” Mater. Sci. Eng., 1998, A243, pp. 305–15.

    Article  Google Scholar 

  23. J.J. Ding, H. Schweiger, W. Wolf, P.F. Rogl, D. Vogtenhuber, and R. Podloucky: “Experimental Phase Equilibria γTiAl+α2Ti3Al+φ in Ternary Intermetallics Ti-M-Al and Calculated Trends of Ternary Substitutions in α2Ti3Al” in Gamma Titanium Aluminides-1999. Proceedings of Symposium held during the 1999 TMS Annual Meeting, TMS- Miner. Metals and Mater. Soc., San Diego, CA, USA, 1999, pp. 141–47.

    Google Scholar 

  24. B. Huneau, P. Rogl, K. Zeng, R. Schmid-Fetzer, M. Bohn, and J. Bauer: “The Ternary System Al-Ni-Ti, Part I: Isothermal Section at 900°C; Experimental Investigation and Thermodynamic Calculation,” Intermetallics, 1999, 7, pp. 1337–45.

    Article  Google Scholar 

  25. K. Zeng, R. Schmid-Fetzer, B. Huneau, P. Rogl, and J. Bauer: “The Ternary System Al-Ni-Ti, Part II: Thermodynamic Assessment and Experimental Investigation of Polythermal Phase Equilibria,” Intermetallics, 1999, 7, pp. 1347–59.

    Article  Google Scholar 

  26. J.J. Ding, P. Rogl, H. Schmidt, and R. Podloucky: “Structure Chemistry and Constitution in TiAl-based Intermetallics,” Visn. Lvivsk, Univ.; Ser. Khim., 2000, 39C, pp. 136–41.

    Google Scholar 

  27. J.J. Ding, P. Rogl, B. Chevalier, and J. Etourneau: “Structural Chemistry and Phase Relations in Intermetallic Systems Ti-{Pd,Pt}-Al,” Intermetallics, 2000, 8, pp. 1377–84.

    Article  Google Scholar 

  28. S. Kim, D. Nguyen-Manh, G.D.W. Smith, and D.G. Pettifor: “Site Preference of Ru and Pd Additions to γ-Based TiAl Intermetallics,” Philos. Mag. A, 2000, 80(11), pp. 2489–508.

    Article  ADS  Google Scholar 

  29. I. Ohnuma, Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, and K. Ishida: “Phase Equilibria in the Ti-Al Binary System,” Acta Mater., 2000, 48, pp. 3113–23.

    Article  Google Scholar 

  30. J. Braun and M. Ellner: “Phase Equilibria Investigations on the Aluminium-Rich Part of the Binary System Ti-Al,” Metall. Mater. Trans. A, 2001, 32A, pp. 1037–48.

    Article  Google Scholar 

  31. M.A. Langoy and S.R. Stock: “Fatigue-Crack Growth in Ti-6Al-4V-0.1Ru in Air and Seawater. I. Design of Experiments, Assessment, and Crack-Growth-Rate Curves,” Metall. Mater. Trans. A, 2001, 32(9), pp. 2297–314.

    Article  Google Scholar 

  32. M.A. Langoy and S.R. Stock: “Fatigue-Crack Growth in Ti-6Al-4V-0.1 Ru in Air and Seawater. II. Crack Path and Microstructure,” Metall. Mater. Trans. A, 2001, 32(9), pp. 2315–24.

    Article  Google Scholar 

  33. T. Roisnel and J. Rodriguez-Carvajal: “WinPLOTR: a Windows Tool for Powder Diffraction Pattern Analysis,” Mater. Sci. Forum, 2001, 378–381(1), pp. 118–23.

    Article  Google Scholar 

  34. L. Cornish: “A Critical Assessment of the Binary System Al-Ru” in MSIT Binary Evaluation Program, available via MSI workplace, MSIT-product, MSI-Stuttgart, 2002.

  35. K. Ishikawa, K. Hashi, K. Suzuki, and K. Aoki: “Hydrogen Absorption Properties of Ti3Al-based Ternary Alloys,” J. Alloys Compd., 2002, 330–332, pp. 543–46.

    Article  Google Scholar 

  36. M. Palm, L.C. Zhang, F. Stein, and G. Sauthoff, “Phases and Phase Equilibria in the Al-rich Part of the Al-Ti System Above 950°C”, Intermetallics, 2002, 10, pp. 523–40.

    Article  Google Scholar 

  37. V. Raghavan: “Al-Fe-Ti (Aluminium-Iron-Titanium),” J. Phase Equilib., 2002, 23(4), pp. 367–74.

    Article  Google Scholar 

  38. R. Schmid-Fetzer, “A Critical Assessment of the Binary System Al-Ti” in MSIT Binary Evaluation Program, available via MSI workplace, MSIT-product, MSI-Stuttgart, 2002.

  39. A. Grytsiv, J.J. Ding, P. Rogl, F. Weill, B. Chevalier, J. Etourneau, G. André, F. Bourée, N. Noël, P. Hundegger, and H. Wiesinger, “Crystal Chemistry of the G-phases in the Systems Ti-{Fe, Co, Ni}-Al With a Novel Filled Variant of the Th6Mn23-type,” Intermetallics, 2003, 11, pp. 351–59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grytsiv, A., Rogl, P., Schmidt, H. et al. Constitution of the ternary system Al-Ru-Ti (Aluminum-Ruthenium-Titanium). JPE 24, 511–527 (2003). https://doi.org/10.1361/105497103772084552

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105497103772084552

Keywords

Navigation