Journal of Phase Equilibria

, Volume 24, Issue 6, pp 511–527 | Cite as

Constitution of the ternary system Al-Ru-Ti (Aluminum-Ruthenium-Titanium)

  • A. Grytsiv
  • P. Rogl
  • H. Schmidt
  • G. Giester
Basic And Applied Research


Phase relations in the ternary system Al-Ru-Ti were studied on arc-melted alloys and specimens annealed at 1100 °C, 950 °C, and 800 °C employing optical and electron microscopy, x-ray diffraction, and electron probe microanalysis. The results, in combination with an assessment of all literature data available, were used to construct liquidus and solidus surfaces, a series of isothermal sections, and a Schulz-Scheil diagram monitoring solidification (crystallization) in thermodynamic equilibrium. The crystal structure of the ternary G-phase was determined by x-ray single crystal diffraction to be a filled variant of the Th6Mn23-type (space group Fm3m). Furthermore, a new ternary compound with AuCu3-type structure was detected.


Phase Equilibrium Isothermal Section Ternary Compound AuCu Invariant Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1966Gan:.
    E. Ganglberger, H. Nowotny, and F. Benesovsky: “New G-Phases (Short Communication),” Monatsh. Chem., 1966, 97, pp. 829–32 (in German).CrossRefGoogle Scholar
  2. 1974Spi:.
    T.A. Spitsyna, M.V. Raevskaya, V. Ya. Markiv, and E.M. Sokolovskaya: “Formation and Properties of New Phases in the (Zr,Ti)-Ru-Al Systems” in Tezisy Dokl. Vses. 2nd. Konf. Kristallokhim. Intermet. Soedin., Lvov. Gos. Univ., Lvov, U.S.S.R., 1974, p. 121 (in Russian).Google Scholar
  3. 1979Rae:.
    M.V. Raevskaya and E.M. Sokolovskaya: “Systems Ruthenium-Aluminium-Transitional Metal of IV Group” in Physical Chemistry of Ruthenium and Its Alloys, Moscow University Press, Moscow, 1979, pp. 99–103 (in Russian).Google Scholar
  4. 1988Kha:.
    A. Khataee, H.M. Flower, and D.R.F. West: “New Titanium — Aluminium — X Alloys for Aerospace Applications,” J. Mater. Eng., 1988, 10, pp. 37–44.CrossRefGoogle Scholar
  5. 1989Kha1:.
    A. Khataee, H.M. Flower, and D.R.F. West: “The Alloying of Titanium Aluminides with Ruthenium,” Platinum Metals Rev., 1989, 33(3), pp. 106–13.Google Scholar
  6. 1989Kha2:.
    A. Khataee, H.M. Flower, and D.R.F. West: “Constitution of Ti-Al-Ru System,” Mater. Sci. Technol., 1989, 5(7), pp. 632–43.Google Scholar
  7. 1989Kha3:.
    A. Khataee, H.M. Flower, and D.R.F. West: “Solid State Phase Transformations in Ti-Al-Ru System,” Mater. Sci. Technol., 1989, 5(9), pp. 873–81.Google Scholar
  8. 1990Mas:.
    T.B. Massalski: Binary Alloy Phase Diagrams, 2nd ed., ASM International, Metals Park, OH, 1990.Google Scholar
  9. 1990Sch:.
    J.C. Schuster and H. Ipser: “Phases and Phase Relations in the Partial System TiAl3-iAl,” Z. Metallkd., 1990, 81(6), pp. 389–96.Google Scholar
  10. 1991Spa:.
    C.J. Sparks, W.D. Porter, J.H. Schneibel, W.C. Oliver, and C.G. Goleg, “Formation of Cubic L12 Al3Ti and Al3Zr by Transitional Metal Substitutions for Al,” Mater. Res. Soc. Symp. Proc., 1991, 186, pp. 175–80.Google Scholar
  11. 1991Vil:.
    P. Villars and L.D. Calvert: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., ASM International, Metals Park, OH, 1991.Google Scholar
  12. 1992Kat:.
    U.R. Kattner, J.-C. Lin, and Y.A. Chang: “Thermodynamic Assessment and Calculation of the Ti-Al System,” Metall. Trans. A, 1992, 23A, pp. 2081–90.ADSGoogle Scholar
  13. 1993Fle:.
    R.L. Fleischer: “Substitutional Solutes in AlRu. I. Effects of Solute on Moduli, Lattice Parameters and Vacancy Production,” Acta Metall. Mater., 1993, 41(3), pp. 863–69.CrossRefMathSciNetGoogle Scholar
  14. 1993Nak:.
    Y. Nakayama and H. Mabushi: “Formation of Ternary L12 Compounds in Al3Ti-Base Alloys,” Intermetallics, 1993, 1, pp. 41–48.CrossRefGoogle Scholar
  15. 1993Pet:.
    Yu. I. Petrov: “Aluminium-Ruthenium-Titanium” in Ternary Alloys: a Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, VCH Verlagsgesellschaft, Weinheim, Germanyand VHC Publishers, New York, NY, USA, 1993, 8, pp. 179–84.Google Scholar
  16. 1994Bra:.
    J. Braun, M. Ellner, and B. Predel: “Splat Cooling Investigations in the Binary System Ti-Al,” Z. Metallkd., 1994, 85(12), pp. 855–62.Google Scholar
  17. 1994Par:.
    E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, and R. Gladyshevskii: TYPIX Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Springer-Verlag, Berlin, Heidelberg, 1994.Google Scholar
  18. 1997Kim:.
    S. Kim and G.D.W. Smith: “AP-FIM Investigation on γ-based Titanium Aluminides,” Mater. Sci. Eng., 1997, A239–240, pp. 229–34.Google Scholar
  19. 1997She:.
    G.M. Sheldrick: “SHELX-97, Program for Crystal Structure Refinement,” University of Göttingen, Germany; Windows version by McArdle, Natl. Univ. Ireland, Galway, Ireland, 1997.Google Scholar
  20. 1997Zha:.
    F. Zhang, S.L. Chen, Y.A. Chang, and U.R. Kattner: “A Thermodynamic Description of the Ti-Al System,” Intermetallics, 1997, 5, pp. 471–82.CrossRefGoogle Scholar
  21. 1998Non:.
    Nonius Kappa CCD Program Package COLLECT, DENZO, SCALEPACK, SORTAV. Nonius, Delft, The Netherlands, 1998.Google Scholar
  22. 1998Sch:.
    R.W. Schutz and H.B. Watkins: “Recent Developments in Titanium Alloy Application in the Energy Industry,” Mater. Sci. Eng., 1998, A243, pp. 305–15.Google Scholar
  23. 1999Din:.
    J.J. Ding, H. Schweiger, W. Wolf, P.F. Rogl, D. Vogtenhuber, and R. Podloucky: “Experimental Phase Equilibria γTiAl+α2Ti3Al+φ in Ternary Intermetallics Ti-M-Al and Calculated Trends of Ternary Substitutions in α2Ti3Al” in Gamma Titanium Aluminides-1999. Proceedings of Symposium held during the 1999 TMS Annual Meeting, TMS- Miner. Metals and Mater. Soc., San Diego, CA, USA, 1999, pp. 141–47.Google Scholar
  24. 1999Hun:.
    B. Huneau, P. Rogl, K. Zeng, R. Schmid-Fetzer, M. Bohn, and J. Bauer: “The Ternary System Al-Ni-Ti, Part I: Isothermal Section at 900°C; Experimental Investigation and Thermodynamic Calculation,” Intermetallics, 1999, 7, pp. 1337–45.CrossRefGoogle Scholar
  25. 1999Zen:.
    K. Zeng, R. Schmid-Fetzer, B. Huneau, P. Rogl, and J. Bauer: “The Ternary System Al-Ni-Ti, Part II: Thermodynamic Assessment and Experimental Investigation of Polythermal Phase Equilibria,” Intermetallics, 1999, 7, pp. 1347–59.CrossRefGoogle Scholar
  26. 2000Din1:.
    J.J. Ding, P. Rogl, H. Schmidt, and R. Podloucky: “Structure Chemistry and Constitution in TiAl-based Intermetallics,” Visn. Lvivsk, Univ.; Ser. Khim., 2000, 39C, pp. 136–41.Google Scholar
  27. 2000Din2:.
    J.J. Ding, P. Rogl, B. Chevalier, and J. Etourneau: “Structural Chemistry and Phase Relations in Intermetallic Systems Ti-{Pd,Pt}-Al,” Intermetallics, 2000, 8, pp. 1377–84.CrossRefGoogle Scholar
  28. 2000Kim:.
    S. Kim, D. Nguyen-Manh, G.D.W. Smith, and D.G. Pettifor: “Site Preference of Ru and Pd Additions to γ-Based TiAl Intermetallics,” Philos. Mag. A, 2000, 80(11), pp. 2489–508.CrossRefADSGoogle Scholar
  29. 2000Ohn:.
    I. Ohnuma, Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, and K. Ishida: “Phase Equilibria in the Ti-Al Binary System,” Acta Mater., 2000, 48, pp. 3113–23.CrossRefGoogle Scholar
  30. 2001Bra:.
    J. Braun and M. Ellner: “Phase Equilibria Investigations on the Aluminium-Rich Part of the Binary System Ti-Al,” Metall. Mater. Trans. A, 2001, 32A, pp. 1037–48.CrossRefGoogle Scholar
  31. 2001Lan1:.
    M.A. Langoy and S.R. Stock: “Fatigue-Crack Growth in Ti-6Al-4V-0.1Ru in Air and Seawater. I. Design of Experiments, Assessment, and Crack-Growth-Rate Curves,” Metall. Mater. Trans. A, 2001, 32(9), pp. 2297–314.CrossRefGoogle Scholar
  32. 2001Lan2:.
    M.A. Langoy and S.R. Stock: “Fatigue-Crack Growth in Ti-6Al-4V-0.1 Ru in Air and Seawater. II. Crack Path and Microstructure,” Metall. Mater. Trans. A, 2001, 32(9), pp. 2315–24.CrossRefGoogle Scholar
  33. 2001Roi:.
    T. Roisnel and J. Rodriguez-Carvajal: “WinPLOTR: a Windows Tool for Powder Diffraction Pattern Analysis,” Mater. Sci. Forum, 2001, 378–381(1), pp. 118–23.CrossRefGoogle Scholar
  34. 2002Cor:.
    L. Cornish: “A Critical Assessment of the Binary System Al-Ru” in MSIT Binary Evaluation Program, available via MSI workplace, MSIT-product, MSI-Stuttgart, 2002.Google Scholar
  35. 2002Ish:.
    K. Ishikawa, K. Hashi, K. Suzuki, and K. Aoki: “Hydrogen Absorption Properties of Ti3Al-based Ternary Alloys,” J. Alloys Compd., 2002, 330–332, pp. 543–46.CrossRefGoogle Scholar
  36. 2002Pal:.
    M. Palm, L.C. Zhang, F. Stein, and G. Sauthoff, “Phases and Phase Equilibria in the Al-rich Part of the Al-Ti System Above 950°C”, Intermetallics, 2002, 10, pp. 523–40.CrossRefGoogle Scholar
  37. 2002Rag:.
    V. Raghavan: “Al-Fe-Ti (Aluminium-Iron-Titanium),” J. Phase Equilib., 2002, 23(4), pp. 367–74.CrossRefMathSciNetGoogle Scholar
  38. 2002Sch:.
    R. Schmid-Fetzer, “A Critical Assessment of the Binary System Al-Ti” in MSIT Binary Evaluation Program, available via MSI workplace, MSIT-product, MSI-Stuttgart, 2002.Google Scholar
  39. 2003Gry:.
    A. Grytsiv, J.J. Ding, P. Rogl, F. Weill, B. Chevalier, J. Etourneau, G. André, F. Bourée, N. Noël, P. Hundegger, and H. Wiesinger, “Crystal Chemistry of the G-phases in the Systems Ti-{Fe, Co, Ni}-Al With a Novel Filled Variant of the Th6Mn23-type,” Intermetallics, 2003, 11, pp. 351–59.CrossRefGoogle Scholar

Copyright information

© ASM International 2003

Authors and Affiliations

  • A. Grytsiv
    • 1
  • P. Rogl
    • 1
  • H. Schmidt
    • 1
  • G. Giester
    • 2
  1. 1.Institut für Physikalische ChemieUniversität WienWienAustria
  2. 2.Institut für Mineralogie und KristallographieUniversität WienWienAustria

Personalised recommendations