Skip to main content
Log in

Thermodynamic properties of SmFeO3(s) and Sm3Fe5O12(s)

  • Basic And Applied Research
  • Published:
Journal of Phase Equilibria

Abstract

The enthalpy increments and the standard molar Gibbs energy (G) of formation of SmFeO3(s) and Sm3Fe5O12(s) have been measured using a Calvet micro-calorimeter and a solid oxide galvanic cell, respectively. A λ-type transition, related to magnetic order-disorder transformation (antiferromagnetic to paramagnetic), is apparent from the heat capacity data at ∼673 K for SmFeO3(s) and at ∼560 K for Sm3Fe5O12(s). Enthalpy increment data for SmFeO3(s) and Sm3Fe5O12(s), except in the vicinity of λ-transition, can be represented by the following polynomial expressions:

$$\begin{gathered} \{ H^0 _m (T) - H^0 _m (298.15K)\{ /J mol^{ - 1} ( \pm 1.2\% ) = - 54532.8 + 147.4 \cdot (T/K) + 1.2 \cdot 10^{ - 4} \cdot (T/K)^2 \hfill \\ + 3.154 \cdot 10^6 \cdot (T/K)^{ - 1} ;(298.15 \leqslant T/K \leqslant 1000) \hfill \\ \end{gathered} $$

for SmFeO3(s), and

$$\begin{gathered} \{ H^0 _m (T) - H^0 _m (298.15K)\} /J mol^{ - 1} ( \pm 1.4\% ) = - 192763 + 554.7 \cdot (T/K) + 2.0 \cdot 10^{ - 6} \cdot (T/K)^2 \hfill \\ + 8.161 \cdot 10^6 \cdot (T/K)^{ - 1} ;(298.15 \leqslant T/K \leqslant 1000) \hfill \\ \end{gathered} $$

for Sm3Fe5O12(s).

The reversible emf of the solid-state electrochemical cells, (−)Pt/{SmFeO3(s)+Sm2O3(s)+Fe(s)} // YDT / CSZ // {Fe(s)+Fe0.95O(s)} / Pt(+) and (−)Pt/{Fe(s)+Fe0.95O(s)} // CSZ // {SmFeO3(s)+Sm3Fe5O12(s)+Fe3O4(s)} / Pt(+), were measured in the temperature ranges of 1005–1259 K and 1030–1252 K, respectively. The standard molar G of formation of solid SmFeO3 and Sm3Fe5O12 calculated by the least squares regression analysis of the data obtained in the current study, and data for Fe0.95O and Sm2O3 from the literature, are given by:

$$\Delta _f G^0 _m (SmFeO_3 ,s)/kJ \cdot mol^{ - 1} ( \pm 2.0) = - 1355.2 + 0.2643 \cdot \langle T/K);(1005 \leqslant T/K \leqslant 1570)$$

and

$$\Delta _f G^0 _m (Sm_3 Fe_5 O_{12} ,s)/kJ \cdot mol^{ - 1} ( \pm 3.1) = - 4891.0 + 1.0312 \cdot (T/K);(1030 \leqslant T/K \leqslant 1252)$$

The uncertainty estimates for ΔfG°m include the standard deviation in the emf and uncertainty in the data taken from the literature. Based on these thermodynamic data, the oxygen potential diagram for the system Sm-Fe-O was constructed at 1250 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.H. Shomate: “The Method of Evaluating and Correlating Thermodynamic Data,” J. Phys. Chem., 1954, 58, pp. 368–72.

    Article  Google Scholar 

  2. R. Pauthenet: “Magnetic Properties of the Rare Earth Garnets,” J. Appl. Phys., 1959, 30, pp. 290S-92S.

    Article  ADS  Google Scholar 

  3. M. Eibschutz, S. Shtrikman, and D. Treves: “Mossbauer Studies of Fe57 in Orthoferrites,” Phys. Rev., 1967, 156, pp. 562–77.

    Article  ADS  Google Scholar 

  4. T. Katsura, K. Kitayama, T. Sugihara, and N. Kimizuka: “Thermochemical Properties of Lanthanoid-Iron-Perovskites at High Temperatures,” Bull. Chem. Soc. Japan, 1975, 48, pp. 1809–11.

    Article  Google Scholar 

  5. T. Katsura, T. Sekine, K. Kitayama, T. Sugihara, and N. Kimizuka: “Thermodynamic Properties of Fe-Lanthanoid-O Compounds at High Temperatures,” J. Solid State Chem., 1978, 23, pp. 43–57.

    Article  ADS  Google Scholar 

  6. C.P. Khattak and F.F.Y. Wang: in “Perovskites and Garnets,” Handbook of the Physics and Chemistry of Rare Earths, K.A. Gschneider, Jr. and L. Eyring, ed., North-Holland, Amsterdam, The Netherlands, 1979, pp. 525–607.

    Google Scholar 

  7. R. Prasad, R. Agarwal, K.N. Roy, V.S. Iyer, V. Venugopal, and D.D. Sood: “Thermal properties of Cs2Cr2O7 (s,l) by high-temperature Calvet calorimeter,” J. Nucl. Mater., 1989, 167, pp. 261–64.

    Article  ADS  Google Scholar 

  8. B. Sundman: “An Assessment of the Fe-O System,” J. Phase Equilibria, 1991, 12, pp. 127–40.

    Article  Google Scholar 

  9. Z. Singh, S. Dash, R. Prasad, and D.D. Sood: “Determination of Standard Molar Gibbs Energy of Formation of SrMoO4(s),” J. Alloys Compds., 1994, 215, pp. 303–07.

    Article  Google Scholar 

  10. I. Barin: No Title in Thermochemical Data of Pure Substances, Vols. I & II, 3rd ed., VCH Publishers, New York, NY, 1995.

    Book  Google Scholar 

  11. A. Goldman: “Crystal Structure of Ferrites” in Handbook of Modern Ferromagnetic Materials, Kluwer Academic Publishers, Assinippi Park, Norwell, Massachusetts, 1999, pp. 207–27.

    Chapter  Google Scholar 

  12. K.T. Jacob and G.N.K. Iyengar: “Thermodynamics and Phase Equilibria Involving the Spinel Solid Solution Fex Mg1−xCr2O4,” Metall. Mater. Trans. B, 1999, 30B, pp. 865–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parida, S.C., Venugopal, V. & Jacob, K.T. Thermodynamic properties of SmFeO3(s) and Sm3Fe5O12(s). JPE 24, 431–440 (2003). https://doi.org/10.1361/105497103770330082

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105497103770330082

Keywords

Navigation