Advertisement

Journal of Phase Equilibria

, 23:211 | Cite as

Optimization of thermodynamic properties of the K2O-SiO2 system at high temperatures

  • Stefan Forsberg
Basic And Applied Research

Abstract

An optimized set of thermodynamic functions for the K2O-SiO2 system at 105 Pa pressure was obtained by considering available phase diagram and thermodynamic data. KSi0.25O and SiO2 were selected as components for the liquid phase. With respect to these components, the highly non-ideal interactions of potassium oxide and silica could be described by using only three temperature-independent Redlich-Kister coefficients for the excess G of the liquid phase. The result is in good agreement with experimental data.

Keywords

Disilicate Liquidus Curve Potassium Silicate Alkaline Earth Metal Oxide Potassium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1937Kra:.
    F.C. Kracek, N.L. Bowen, and G.W. Morey: “Equilibrium Relations and Factors Influencing Their Determination in the System K2SiO3-SiO2,” J. Phys. Chem., 1937, 41(9), pp. 1183–193.CrossRefGoogle Scholar
  2. 1948Red:.
    O. Redlich and A.T. Kister: “Algebraic Representation of Thermodynamic Properties and the Classification of Solutions,” Ind. Eng. Chem., 1948, 40(2), pp. 345–48.CrossRefGoogle Scholar
  3. 1953Kra:.
    F.C. Kracek: “Contributions of Thermochemical and X-Ray Data to the Problem of Mineral Stability,” Annual Report of the Directorate of the Geophysical Laboratory, Geophysical Laboratory Paper 1215, 1953, pp. 69–75.Google Scholar
  4. 1954Fin:.
    C.J.B. Fincham and F.D. Richardson: “The Behaviour of Sulphur in Silicate and Aluminate Melts,” Proc. Roy. Soc., 1954, 223, pp. 40–62.CrossRefADSGoogle Scholar
  5. 1962Kel:.
    K.K. Kelley: “Heats and Free Energies of Formation of Anhydrous Silicates,” U.S. Bur. Mines, Rept. Inv. No. 5901, 1962, pp. 1–32.Google Scholar
  6. 1966Cha:.
    R.J. Charles: “Metastable Liquid Immiscibility in Alkali Metal Oxide-Silica Systems,” J. Am. Ceram. Soc., 1966, 49(2), pp. 55–62.CrossRefGoogle Scholar
  7. 1967Mor:.
    Y. Moriya, D.H. Warrington, and R.W. Douglas: “Metastable Liquid-Liquid Immiscibility in Some Binary and Ternary Alkali Silicate Glasses,” Phys. Chem. Glasses, 1967, 8(1), pp. 19–25.Google Scholar
  8. 1970Stu:.
    D.R. Stull, D.L. Hildenbrand, F.L. Oetting, and G.C. Sinke: “Low Temperature Heat Capacities of 15 Inorganic Compounds,” J. Chem. Eng. Data, 1970, 15(1), pp. 52–56.CrossRefGoogle Scholar
  9. 1973Fro:.
    M.G. Frohberg, E. Caune, and M.L. Kapoor: “Measurement of the Activity of the Oxygen Ions in the Liquid Systems Na2O-SiO2 and K2O-SiO2,” Arch. Eisenhüttenwes., 1973, 44(8), pp. 585–88 (in German).Google Scholar
  10. 1978Eli:.
    N. Eliezer, R.A. Howald, M. Marinkovic, and I. Eliezer: “Vapor Pressure Measurements, Thermodynamic Parameters, and Phase Diagram for the System Potassium Oxide-Silicon Oxide at High Temperatures,” J. Phys. Chem., 1978, 82(9), pp. 1021–26.CrossRefGoogle Scholar
  11. 1980Bey:.
    R.P. Beyer, M.J. Ferrante, R.R. Brown, and G.E. Daut: “Thermodynamic Properties of Potassium Metasilicate and Disilicate,” U.S. Bur. Mines, Rept. Inv. No. 8410, 1980, pp. 1–21.Google Scholar
  12. 1981Kaw:.
    Y. Kawamoto and M. Tomozawa: “Prediction of Immiscibility Boundaries of the Systems K2O-SiO2, K2O-Li2O-SiO2, K2O-N2O-SiO2 and K2O-BaO-SiO2,” J. Am. Ceram. Soc., 1981, 64(5), pp. 289–92.CrossRefGoogle Scholar
  13. 1982Ric:.
    P. Richet, Y. Bottinga, L. Denielou, J.P. Petitet, and C. Tequi: “Thermodynamic Properties of Quartz, Cristobalite and Amorphous SiO2: Drop Calorimetry Measurements Between 1000 and 1800 K and a Review from 0 to 2000 K,” Geochim. Cosmochim. Acta, 1982, 46, pp. 2639–58.CrossRefADSGoogle Scholar
  14. 1985Hil:.
    M. Hillert, B. Jansson, B. Sundman, and J. Ågren: “A Two-Sublattice Model for Molten Solutions with Different Tendency for Ionization,” Metall. Trans. A, 1985, 16A, pp. 261–66.ADSGoogle Scholar
  15. 1985JAN:.
    JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data, 1985, 14(S1–2), pp. 1–1856.Google Scholar
  16. 1985Ric:.
    P. Richet and Y. Bottinga: “Heat Capacity of Aluminium-Free Liquid Silicates,” Geochim. Cosmochim. Acta, 1985, 49, pp. 471–86.CrossRefADSGoogle Scholar
  17. 1986Pel:.
    A.D. Pelton and M. Blander: “Thermodynamic Analysis of Ordered Liquid Solutions by a Modified Quasichemical Approach-Application to Silicate Slags,” Metall. Trans. B, 1986, 17B, pp. 805–15.CrossRefADSGoogle Scholar
  18. 1989Bar:.
    I. Barin: Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim, Germany, 1989.Google Scholar
  19. 1990Eri:.
    G. Eriksson and K. Hack: “ChemSage—A Computer Program for the Calculation of Complex Chemical Equilibria,” Metall. Trans. A, 1990, 21B, pp. 1013–23.ADSGoogle Scholar
  20. 1990Hil:.
    M. Hillert, B. Jansson, and B. Sundman: “A Model for Silicate Melts,” Metall. Trans. B, 1990, 21B, pp. 404–06.CrossRefADSGoogle Scholar
  21. 1991Kim:.
    S.S. Kim and T.H. Sanders: “Thermodynamic Modeling of Phase Diagrams in Binary Alkali Silicate Systems,” J. Am. Ceram. Soc., 1991, 74(8), pp. 1833–40.CrossRefGoogle Scholar
  22. 1993Wu:.
    P. Wu, G. Eriksson, and A.D. Pelton: “Optimization of the Thermodynamic Properties and Phase Diagrams of the Na2O-SiO2 and K2O-SiO2 Systems,” J. Am. Ceram. Soc., 1993, 76(8), pp. 2059–64.CrossRefGoogle Scholar
  23. 1994Nor:.
    A. Nordin: “Chemical Elemental Characteristics of Biomass Fuels,” Biomass Bioenergy, 1994, 6(5), pp. 339–47.CrossRefGoogle Scholar
  24. 1995Kon:.
    E. Königsberger and G. Eriksson: “A New Optimization Routine for ChemSage,” Calphad, 1995, 19(2), pp. 207–14.CrossRefGoogle Scholar

Copyright information

© ASM International 2002

Authors and Affiliations

  • Stefan Forsberg
    • 1
  1. 1.Department of Chemistry, Inorganic ChemistryUmeå UniversityUmeåSweden

Personalised recommendations