Skip to main content
Log in

Optimization of thermodynamic properties of the K2O-SiO2 system at high temperatures

  • Basic And Applied Research
  • Published:
Journal of Phase Equilibria

Abstract

An optimized set of thermodynamic functions for the K2O-SiO2 system at 105 Pa pressure was obtained by considering available phase diagram and thermodynamic data. KSi0.25O and SiO2 were selected as components for the liquid phase. With respect to these components, the highly non-ideal interactions of potassium oxide and silica could be described by using only three temperature-independent Redlich-Kister coefficients for the excess G of the liquid phase. The result is in good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F.C. Kracek, N.L. Bowen, and G.W. Morey: “Equilibrium Relations and Factors Influencing Their Determination in the System K2SiO3-SiO2,” J. Phys. Chem., 1937, 41(9), pp. 1183–193.

    Article  Google Scholar 

  2. O. Redlich and A.T. Kister: “Algebraic Representation of Thermodynamic Properties and the Classification of Solutions,” Ind. Eng. Chem., 1948, 40(2), pp. 345–48.

    Article  Google Scholar 

  3. F.C. Kracek: “Contributions of Thermochemical and X-Ray Data to the Problem of Mineral Stability,” Annual Report of the Directorate of the Geophysical Laboratory, Geophysical Laboratory Paper 1215, 1953, pp. 69–75.

  4. C.J.B. Fincham and F.D. Richardson: “The Behaviour of Sulphur in Silicate and Aluminate Melts,” Proc. Roy. Soc., 1954, 223, pp. 40–62.

    Article  ADS  Google Scholar 

  5. K.K. Kelley: “Heats and Free Energies of Formation of Anhydrous Silicates,” U.S. Bur. Mines, Rept. Inv. No. 5901, 1962, pp. 1–32.

  6. R.J. Charles: “Metastable Liquid Immiscibility in Alkali Metal Oxide-Silica Systems,” J. Am. Ceram. Soc., 1966, 49(2), pp. 55–62.

    Article  Google Scholar 

  7. Y. Moriya, D.H. Warrington, and R.W. Douglas: “Metastable Liquid-Liquid Immiscibility in Some Binary and Ternary Alkali Silicate Glasses,” Phys. Chem. Glasses, 1967, 8(1), pp. 19–25.

    Google Scholar 

  8. D.R. Stull, D.L. Hildenbrand, F.L. Oetting, and G.C. Sinke: “Low Temperature Heat Capacities of 15 Inorganic Compounds,” J. Chem. Eng. Data, 1970, 15(1), pp. 52–56.

    Article  Google Scholar 

  9. M.G. Frohberg, E. Caune, and M.L. Kapoor: “Measurement of the Activity of the Oxygen Ions in the Liquid Systems Na2O-SiO2 and K2O-SiO2,” Arch. Eisenhüttenwes., 1973, 44(8), pp. 585–88 (in German).

    Google Scholar 

  10. N. Eliezer, R.A. Howald, M. Marinkovic, and I. Eliezer: “Vapor Pressure Measurements, Thermodynamic Parameters, and Phase Diagram for the System Potassium Oxide-Silicon Oxide at High Temperatures,” J. Phys. Chem., 1978, 82(9), pp. 1021–26.

    Article  Google Scholar 

  11. R.P. Beyer, M.J. Ferrante, R.R. Brown, and G.E. Daut: “Thermodynamic Properties of Potassium Metasilicate and Disilicate,” U.S. Bur. Mines, Rept. Inv. No. 8410, 1980, pp. 1–21.

  12. Y. Kawamoto and M. Tomozawa: “Prediction of Immiscibility Boundaries of the Systems K2O-SiO2, K2O-Li2O-SiO2, K2O-N2O-SiO2 and K2O-BaO-SiO2,” J. Am. Ceram. Soc., 1981, 64(5), pp. 289–92.

    Article  Google Scholar 

  13. P. Richet, Y. Bottinga, L. Denielou, J.P. Petitet, and C. Tequi: “Thermodynamic Properties of Quartz, Cristobalite and Amorphous SiO2: Drop Calorimetry Measurements Between 1000 and 1800 K and a Review from 0 to 2000 K,” Geochim. Cosmochim. Acta, 1982, 46, pp. 2639–58.

    Article  ADS  Google Scholar 

  14. M. Hillert, B. Jansson, B. Sundman, and J. Ågren: “A Two-Sublattice Model for Molten Solutions with Different Tendency for Ionization,” Metall. Trans. A, 1985, 16A, pp. 261–66.

    ADS  Google Scholar 

  15. JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data, 1985, 14(S1–2), pp. 1–1856.

  16. P. Richet and Y. Bottinga: “Heat Capacity of Aluminium-Free Liquid Silicates,” Geochim. Cosmochim. Acta, 1985, 49, pp. 471–86.

    Article  ADS  Google Scholar 

  17. A.D. Pelton and M. Blander: “Thermodynamic Analysis of Ordered Liquid Solutions by a Modified Quasichemical Approach-Application to Silicate Slags,” Metall. Trans. B, 1986, 17B, pp. 805–15.

    Article  ADS  Google Scholar 

  18. I. Barin: Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim, Germany, 1989.

    Google Scholar 

  19. G. Eriksson and K. Hack: “ChemSage—A Computer Program for the Calculation of Complex Chemical Equilibria,” Metall. Trans. A, 1990, 21B, pp. 1013–23.

    ADS  Google Scholar 

  20. M. Hillert, B. Jansson, and B. Sundman: “A Model for Silicate Melts,” Metall. Trans. B, 1990, 21B, pp. 404–06.

    Article  ADS  Google Scholar 

  21. S.S. Kim and T.H. Sanders: “Thermodynamic Modeling of Phase Diagrams in Binary Alkali Silicate Systems,” J. Am. Ceram. Soc., 1991, 74(8), pp. 1833–40.

    Article  Google Scholar 

  22. P. Wu, G. Eriksson, and A.D. Pelton: “Optimization of the Thermodynamic Properties and Phase Diagrams of the Na2O-SiO2 and K2O-SiO2 Systems,” J. Am. Ceram. Soc., 1993, 76(8), pp. 2059–64.

    Article  Google Scholar 

  23. A. Nordin: “Chemical Elemental Characteristics of Biomass Fuels,” Biomass Bioenergy, 1994, 6(5), pp. 339–47.

    Article  Google Scholar 

  24. E. Königsberger and G. Eriksson: “A New Optimization Routine for ChemSage,” Calphad, 1995, 19(2), pp. 207–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forsberg, S. Optimization of thermodynamic properties of the K2O-SiO2 system at high temperatures. JPE 23, 211 (2002). https://doi.org/10.1361/105497102770331695

Download citation

  • Received:

  • Revised:

  • DOI: https://doi.org/10.1361/105497102770331695

Keywords

Navigation