Phase diagram calculations of ZrO2-based ceramics with an emphasis on the reduction/oxidation equilibria of cerium ions in the ZrO2-YO1.5-CeO2-CeO1.5 system

Abstract

Phase diagram calculations that were made previously for the ZrO2-MO m/2 (m = 2, 3, 4) systems and for the ZrO2-YO1.5-MO m/2 (M = transition metals) systems have been extended to the ZrO2-YO1.5-CeO2(-CeO1.5) system to make an attempt to explain (1) thermogravimetric (TG) results as a function of oxygen potential, (2) electronic conductivity as a function of oxygen potential, and (3) a miscibility gap observed in air. The interaction parameters for the CeO2-CeO1.5-YO1.5 system were obtained from the reported oxygen nonstoichiometry in CeO2−x and rate earth doped ceria, (Ce,RE)O2−δ . The interaction parameters for the ZrO2-CeO2 subsystem were obtained so as to reproduce the observed miscibility gap at 1273 K. Those thermodynamic properties can reproduce consistently the experimental behaviors of the electronic conductivity and the TG results in the (Zr1−x Ce x )0.8Y0.2O1.9 solid solutions; these indicate the enhancement of reduction of CeO2.

References

  1. 1.

    D.-J. Kim: J. Am. Ceram. Soc., 1989, vol. 72, pp. 1415–21.

    Article  Google Scholar 

  2. 2.

    T. Kawada and H. Yokokawa: in Electrical Properties of Ionic Solids, J. Nowotny and C.C. Sorrell, eds., Trans Tech Publications, Aedermannsdorf, Switzerland, 1997, pp. 187–248.

    Google Scholar 

  3. 3.

    B. Steele: Solid State Ionics, 2000, vol. 129, pp. 95–110.

    Article  Google Scholar 

  4. 4.

    H. Yokokawa, N. Sakai, T. Kawada, and M. Dokiya: in Science and Technology of Zirconia V, S.P.S. Badwal, M.J. Bannister, and R.H.J. Hannink, eds., The Australian Ceramic Society, The Technomic Publication Co. Inc., Lancaster, PA, 1993, pp. 59–68.

    Google Scholar 

  5. 5.

    H. Yokokawa: In Zirconia Engineering Ceramics: Old Challenges—New Ideas, Erich Kisi, ed., Trans Tech Publications, Aedermannsdorf, Switzerland, 1998, pp. 37–74.

    Google Scholar 

  6. 6.

    H. Yokokawa, T. Horita, N. Sakai, and M. Dokiya: in Ceramic Interfaces: Properties and Applications, R.ST.C. Smart and J. Nowotny, eds., IOM Communications Ltd., London, 1998, pp. 171–201.

    Google Scholar 

  7. 7.

    H. Yokokawa, N. Sakai, T. Kawada, and M. Dokiya: J. Electrochem. Soc., 1991, vol. 138, p. 2719.

    Article  Google Scholar 

  8. 8.

    H. Inaba and H. Tagawa: Solid State Ionics, 1996, vol. 83, pp. 1–16.

    Article  Google Scholar 

  9. 9.

    M. Mogensen, N.M. Sammes, and G.A. Tompsett: Solid State Ionics, 2000, vol. 129, pp. 63–94.

    Article  Google Scholar 

  10. 10.

    Y. Hinatus and T. Muromura: Mater. Res. Bull., 1986, vol. 21, pp. 1343–49.

    Article  Google Scholar 

  11. 11.

    N.M. Sammes, G.A. Tompsett, and Z. Cai: Solid State Ionics, 1999, vol. 121, p. 121.

    Article  Google Scholar 

  12. 12.

    N. Sakai, T. Hashimoto, K. Yamaji, H. Negishi, T. Horita, H. Yokokawa, Y.P. Xiong, M. Nakagawa, and Y. Takahashi: Solid State Ionics, 2001, in press.

  13. 13.

    H. Arashi, H. Naito, and M. Nakata: Solid State Ionics, 1995, vol. 76, pp. 315–19.

    Article  Google Scholar 

  14. 14.

    Yueping Xiong, K. Yamaji, N. Sakai, N. Negishi, T. Horita, and H. Yokokawa: Solid Oxide Fuel Cells VII, PV 2001–16, The Electrochemical Society, Inc., 2001, Pennington, NJ, pp. 422–30.

    Google Scholar 

  15. 15.

    H. Naito, H. Yugami, N. Sakai, and H. Yokokawa: Solid State Ionics, 2000, vol. 135, pp. 669–73.

    Article  Google Scholar 

  16. 16.

    T. Otake, H. Yugami, K. Kawamura, Y. Nigara, T. Kawada, and J. Mizusaki: Electrochemistry 2000, vol. 68, p. 451.

    Google Scholar 

  17. 17.

    N. Akasaka, K. Sekizawa, K. Sasaki, and K. Eguchi: 25th Symp. on Solid State Ionics in Japan, Extended Abstract, Dec. 8–10, 1999, Sapporo, Japan, The Solid State Ionics Society of Japan, Nagoya, 1999, pp. 33–34.

    Google Scholar 

  18. 18.

    L. Kaufman: User Applications of Phase Diagram Calculations, ASM International, Materials Park, OH, 1989, pp. 145–76.

    Google Scholar 

  19. 19.

    S.A. Degtyarec and G.F. Voronin: CALPHAD, 1988, vol. 12, pp. 73–82.

    Article  Google Scholar 

  20. 20.

    Y. Du, Z. Jin, and P. Huang: J. Am. Ceram. Soc., 1991, vol. 74, pp. 2107–12.

    Article  Google Scholar 

  21. 21.

    O. Redlich. and A.T. Kister: Ind. Eng. Chem., 1948, vol. 40, p. 345.

    Article  Google Scholar 

  22. 22.

    Y.M. Muggianu, M. Gmbino, and J.-P. Bros: J. Chimie Phys., 1989, vol. 72, p. 2104.

    Google Scholar 

  23. 23.

    D.J.M. Bevan and J. Kordis: J. Inorg. Nucl. Chem., 1964, vol. 26, pp. 1509–23.

    Article  Google Scholar 

  24. 24.

    R.J. Panlener, R.N. Blumenthal, and J.E. Garnier: J. Phys. Chem. Solids, 1975, vol. 36, pp. 1213–22.

    Article  ADS  Google Scholar 

  25. 25.

    J. Campserveux and P. Gerdanian: J. Solid State Chem., 1978, vol. 23, pp. 73–92.

    Article  ADS  Google Scholar 

  26. 26.

    M. Richen, J. Nölting, and I. Riess: J. Solid State Chem., 1984, vol. 54, pp. 89–99.

    Article  ADS  Google Scholar 

  27. 27.

    T.B. Lindemer: CALPHAD, 1986, vol. 10, pp. 129–36.

    Article  Google Scholar 

  28. 28.

    M. Hillert and B. Jansson: J. Am. Ceram. Soc., 1986, vol. 69, pp. 732–34.

    Article  Google Scholar 

  29. 29.

    M. Benzakour, R. Tetot, and G. Borseau: J. Phys. Chem. Solids, 1988, vol. 49, pp. 381–84.

    Article  ADS  Google Scholar 

  30. 30.

    S. Wang, H. Inaba, H. Tagawa, and T. Hashimoto: J. Electrochem. Soc., 1997, vol. 144, p. 4076.

    Article  Google Scholar 

  31. 31.

    S. Wang, H. Inaba, H. Tagawa, M. Dokiya, and T. Hashimoto: Solid State Ionics, 1998, vol. 107, p. 73.

    Article  Google Scholar 

  32. 32.

    T. Kobayashi, S. Wang, M. Dokiya, H. Tagawa, and T. Hashimoto: Solid State Ionics, 1999, vol. 126, pp. 349–57.

    Article  Google Scholar 

  33. 33.

    D. Schneider, M. Godickemeier, and L.J. Gauckler: J. Electroceramics, 1997, vol. 1, p. 165; D. Schneider, M. Godickemeier, and L.J. Gauckler: Br. Ceram. Proc., 1996, vol. 56, pp. 103–12.

    Article  Google Scholar 

  34. 34.

    J.G. Pepin, E.R. Vance, and G.J. McCarthy: J. Solid State Chem., 1981, vol. 38, pp. 360–67.

    Article  ADS  Google Scholar 

  35. 35.

    H. Yahiro, K. Eguchi, and H. Arai: Solid State Ionics, 1989, vol. 36, pp. 71–75.

    Article  Google Scholar 

  36. 36.

    G. Bulducci, J. Kaspar, P. Fornasiero, M. Graziani, M.S. Islam, and J.D. Gale: J. Phys. Chem., 1997, vol. B101, pp. 1750–53.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yokokawa, H., Sakai, N., Horita, T. et al. Phase diagram calculations of ZrO2-based ceramics with an emphasis on the reduction/oxidation equilibria of cerium ions in the ZrO2-YO1.5-CeO2-CeO1.5 system. JPE 22, 331 (2001). https://doi.org/10.1361/105497101770338842

Download citation

Keywords

  • Cerium
  • Interaction Parameter
  • Solid State Ionic
  • Oxygen Potential
  • Excess Entropy