Correlation between interfacial energy and phase diagram in ceramic-metal systems


Estimates of interfacial energies between ceramics (MX) and liquid metals (A) have been arrived at by employing an improved version of the Becker’s model for interfacial energy calculations at liquid metal-liquid metal interfaces to calculate the total energy of interatomic bonds across an interface. The results of such an approximation yield values that are very close to the experimental values; for instance, the estimated value for Al2O3/lFe is 2 J · m−2, which compares well with the experimental data ranging from 1.9 to 2.3 J · m−2. It is suggested that interfacial energies depend on two terms: (1) the formation energy of MX and (2) the pairwise interaction energies between M and A atoms and X atoms and vacant interstitial sites. It is also found that the calculated interfacial energies in eutectic systems (carbides-metal, etc.) are generally low, while those in the monotectic systems (oxides-metal, etc.) are generally high.

This is a preview of subscription content, access via your institution.


  1. 1.

    C. Herring: Phys. Rev., 1951, vol. 82, pp. 87–93; Metal Interfaces, ASM, Cleveland, OH, 1952.

    MATH  Article  ADS  Google Scholar 

  2. 2.

    R.A. Swalin: Thermodynamics of Solids, John Wiley and Sons, New York, NY, 1962, ch. 12.

    Google Scholar 

  3. 3.

    L.E. Murr: Interfacial Phenomena in Metals and Alloys, Addison-Wesley Publishing Company, Reading, MA, 1975, ch. 3.

    Google Scholar 

  4. 4.

    W.D. Kingery, H.K. Bowen, and D.R. Uhlmann: Introduction to Ceramics, 2nd ed., John Wiley and Sons, New York, NY, 1976, ch. 5.

    Google Scholar 

  5. 5.

    R. Becker: Ann. Phys., 1938, vol. 32, pp. 128–40.

    Article  Google Scholar 

  6. 6.

    M. Hasebe and T. Nishizawa: CALPHAD, 1980, vol. 4, pp. 83–100.

    Article  Google Scholar 

  7. 7.

    L.H. Van Vlack: Trans. AIME., 1951, vol. 191, pp. 251–59.

    Google Scholar 

  8. 8.

    S.W. Ip, M. Kucharski, and T.M. Toguri: J. Mater. Sci. Lett., 1993, vol. 12, pp. 1699–1702.

    Article  Google Scholar 

  9. 9.

    M. Hillert and L.-I. Staffansson: Acta Chem. Scand., 1970, vol. 24, pp. 3618–26.

    Article  Google Scholar 

  10. 10.

    The Japan Society for Promotion of Science, The 19th Committee in Steelmaking: Steelmaking Data Sourcebook, Gordon and Breach Science Publishers, New York, NY, 1988.

    Google Scholar 

  11. 11.

    G. Eriksson, P. Wu, and A.D. Pelton: CALPHAD, 1993, vol. 17, pp. 189–205.

    Article  Google Scholar 

  12. 12.

    K. Ogino: Bull. Jpn. Inst. Met., 1972, vol. 11, pp. 323–32.

    Google Scholar 

  13. 13.

    M. Hillert, M. Selleby, and B. Sundman: Metall. Trans. A, 1990, vol. 21A, pp. 2759–76.

    ADS  Google Scholar 

  14. 14.

    J. Pötchke: Metall., 1970, vol. 24, p. 123.

    Google Scholar 

  15. 15.

    L.-I. Staffansson: Metall. Trans. B, 1976, vol. 7B, pp. 131–34.

    ADS  Google Scholar 

  16. 16.

    J. Miettinen and B. Hallstedt: CALPHAD, 1998, vol. 22, pp. 257–73.

    Article  Google Scholar 

  17. 17.

    M. Hillert and S. Jonsson: Metall. Trans. A, 1992, vol. 23A, pp. 3141–49.

    ADS  Google Scholar 

  18. 18.

    T. Nishizawa: ISIJ Int., 2000, vol. 40, pp. 1269–74.

    Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nishizawa, T., Ohnuma, I. & Ishida, K. Correlation between interfacial energy and phase diagram in ceramic-metal systems. JPE 22, 269 (2001).

Download citation


  • Phase Equilibrium
  • Liquid Metal
  • Interfacial Energy
  • Front Atom
  • Pairwise Interaction Energy