Skip to main content
Log in

Molecular models for the vapor-liquid equilibrium of simple binary mixtures

  • Basic And Applied Research
  • Published:
Journal of Phase Equilibria

Abstract

Simple analytical expressions are proposed for the calculation of the equilibrium pressure, as well as (for a given temperature and pressure) the mole fractions of both liquid and vapor phases at the vapor-liquid equilibrium of binary mixtures. They are based on a recently proposed molecular model for the vapor pressure of pure nonpolar fluids, which, for a given temperature, only requires as input the values of the two Lennard-Jones (LJ) molecular parameters and the acentric factor, which are parameters related to the molecular shape of each substance and whose values are readily available. The model for the equilibrium pressure of a binary mixture (which also permits one to obtain the liquid phase mole fraction) is similar to that derived from Raoult’s law, where a properly modified Lorentz-Berthelot mixing rule is used, the interaction parameters being given as simple functions of the temperature and composition with eight appropriate constants for each binary mixture. A different model is needed to calculate the vapor mole fraction in which five appropriate constants are needed for each mixture. Here, we show how the models reproduce accurately and straightforwardly the vapor liquid equilibrium properties (pressure, liquid mole fraction, and vapor mole fraction) of eight binary systems over a broad temperature range, including some data at or near the critical locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W.B. kay and T.D. Nevens (1952): in Vapor-Liquid Equilibrium Data Collection, J. Gmehling, U. Onken, and M. Arlt, eds., DECHEMA, Frankfurt am Main, 1982.

    Google Scholar 

  2. S.P. Datsur (1964): in Vapor-Liquid Equilibrium Data Collection, J. Gmehling, U. Onken, and M. Arlt, eds., DECHEMA, Frankfurt am Main, 1982.

    Google Scholar 

  3. V.S. Mehta and G. Thodos (1965): in Vapor-Liquid Equilibrium Data Collection, J. Gmehling, U. Onken, and M. Arlt, eds., DECHEMA, Frankfurt am Main, 1982.

    Google Scholar 

  4. A.B.J. Rodrigues, D.S. Mc Caffrey, and J.P. Kohn (1968): in Vapor-Liquid Equilibrium Data Collection, J. Gmehling, U. Onken, and M. Arlt, eds., DECHEMA, Frankfurt am Main, 1982.

    Google Scholar 

  5. G.J. Besserer and D.B. Robinson (1973): in Vapor-Liquid Equilibrium Data Collection, J. Gmehling, U. Onken, and M. Arlt, eds., DECHEMA, Frankfurt am Main, 1982.

    Google Scholar 

  6. M.J. Huron and J. Vidal: Fluid Phase Equilibria, 1979, vol. 3, pp. 255–71.

    Article  Google Scholar 

  7. R.L. Cotterman, B.J. Schwarz, and J.M. Prausnitz: AIChE J., 1986, vol. 32 (11), pp. 1787–98.

    Article  Google Scholar 

  8. R.L. Cotterman and J.M. Prausnitz: AIChE J., 1986, vol. 32 (11), pp. 1799–1812.

    Article  Google Scholar 

  9. C. Eckert and S.I. Sandler: J. Chem. Eng. Data, 1986, vol. 31, pp. 26–28.

    Article  Google Scholar 

  10. C.H. Kim, P. Vimalchand, and M.D. Donohue: Fluid Phase Equilibria, 1986, vol. 31, pp. 299–311.

    Article  Google Scholar 

  11. J.M. Prausnitz, R.N. Lichtenthaler, and E. Gomes de Azevedo: Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice-Hall Inc., Englewood Cliffs, NJ, 1986.

    Google Scholar 

  12. R. Stryjek and J.H. Vera: Can. J. Chem. Eng., 1986, vol. 64, pp. 820–26.

    Article  Google Scholar 

  13. R.C. Reid, J.M. Prausnitz, and B.E. Poling: The Properties of Gases and Liquids, McGraw-Hill Book Co., New York, NY, 1987.

    Google Scholar 

  14. V.G. Niesen: J. Chem. Thermodyn., 1989, vol. 21, pp. 915–23.

    Article  Google Scholar 

  15. P. Englezos, N. Kalogerakis, M.A. Trebble, and P.R. Bishnoi: Fluid Phase Equilibria, 1990, vol. 58, pp. 117–23.

    Article  Google Scholar 

  16. G. Gao, J.L. Dadiron, H. Saint-Guirons, P. Xans, and F. Montel: Fluid Phase Equilibria, 1992, vol. 74, pp. 85–93.

    Article  Google Scholar 

  17. D.S.H. Wong and S.I. Sandler: AIChE J., 1992, vol. 38, pp. 671–80.

    Article  Google Scholar 

  18. I. Ashour and G. Aly: Fluid Phase Equilibira, 1994, vol. 98, pp. 55–69.

    Article  Google Scholar 

  19. J. Coutinho, G. Kontogeorgis, and E. Stenby: Fluid Phase Equilibria, 1994, vol. 102, pp. 31–60.

    Article  Google Scholar 

  20. I. Ashour and G. Aly: Computers Chem. Eng., 1996, vol. 20, pp. 79–91.

    Article  Google Scholar 

  21. F. Cuadros, I. Cachadiña, and W. Ahumada: Mol. Eng., 1996, vol. 6, pp. 319–25.

    Article  Google Scholar 

  22. DIPPR (Design Institute for Physical Property Data), American Institute of Chemical Engineers, STN International, Germany, via on-line, 1996.

    Google Scholar 

  23. A. Keshtkar, F. Jalali and M. Moshfeghian: Fluid Phase Equilibria, 1997, vol. 140, pp. 107–28.

    Article  Google Scholar 

  24. F. Blas and L. Vega: Ind. Eng. Chem. Res., 1998, vol. 37, pp. 660–74.

    Article  Google Scholar 

  25. S.B. Kiselev, J.C. Rainwater, and M.L. Huber: Fluid Phase Equilibria, 1998, vol. 150, pp. 469–78.

    Article  Google Scholar 

  26. I. Polishuk, J. Wisniak, and H. Segura: Fluid Phase Equilibria, 1999, vol. 164, pp. 13–47.

    Article  Google Scholar 

  27. F. Cuadros, C.A. Faúndez, and A. Mulero: Phase Transitions, 2000, vol. 71 (1), pp. 57–72.

    Article  Google Scholar 

  28. F. Cuadros, C.A. Faúndez, and A. Mulero: Phase Transitions, 2000, vol. 72, pp. 309–29.

    Article  Google Scholar 

  29. C.A. Faúndez, A. Mulero, and F. Cuadros: J. Phase Equilibria, 2000, vol. 21 (4), pp. 364–70.

    Article  Google Scholar 

  30. Y.P. Lee, Y.C. Chiew, and G.P. Rangaiah: Ind. Eng. Chem. Res., 2000, vol. 39, pp. 1497–1502.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faúndez, C.A., Mulero, A. & Cuadros, F. Molecular models for the vapor-liquid equilibrium of simple binary mixtures. JPE 22, 531–538 (2001). https://doi.org/10.1361/105497101770332677

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105497101770332677

Keywords

Navigation