Journal of Failure Analysis and Prevention

, Volume 5, Issue 6, pp 70–78 | Cite as

Mitigation of ammonia-induced SCC in a cupronickel alloy by additions of MgCl2

Part 2: Role of MgCl2 concentration in a cupronickel alloy exposed to 10% ammonia
  • D. C. Agarwal
  • S. Sarin
  • K. Wadhwa
  • R. Vishwakarma
  • M. B. Deshmukh
  • S. Kurian
Peer Reviewed Articles

Abstract

The work presented in Part 1 of this article showed that additions of magnesium chloride (MgCl2) to ammonia solutions reduced the tendency of ammonia-induced stress-corrosion cracking (SCC) initiation in a Cu-5%Ni alloy. The present work was undertaken to study the SCC behavior of the test alloy exposed to ammonia in the presence of varying concentrations of MgCl2. The exposure to MgCl2 additions reduced the severity of the ammonia-induced SCC.

Keywords

accelerated corrosion testing corrosion failure analysis failure mechanism fractography fracture mechanisms mechanical behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.C. Agarwal: “Effect of Ammoniacal Sea Water on Material Properties of Copper-Nickel Alloy,” Brit. Corros. J., 2002, 37(2), pp. 105–13(9).CrossRefGoogle Scholar
  2. 2.
    D.C. Agarwal: “Stress Corrosion in Copper-Nickel Alloys: Influence of Ammonia,” Brit. Corros. J., 2002, 37(4), pp. 267–75(9).CrossRefGoogle Scholar
  3. 3.
    D.C. Agarwal: “Effect of Ammonia Concentration on Environment-Assisted Failures in a Low-Nickel Copper Alloy,” Pract. Fail. Anal., 2003, 3(5), pp. 58–68.CrossRefGoogle Scholar
  4. 4.
    D.C. Agarwal: “Effect of Cyclic Stresses on Stress Corrosion Cracking of Cu-Ni Alloy,” Corros. Eng. Sci. Techn., 2003, 38(4), pp. 275–85(11).CrossRefGoogle Scholar
  5. 5.
    U. Bertocci and E.N. Pugh: “Chemical and Electro Chemical Aspects of SCC of Alpha Brass in Aqueous Ammonia,” Proceedings of International Congress on Metallic Corrosion, Toronto, Canada, 1984, vol. 1, National Research Council of Canada, p. 144.Google Scholar
  6. 6.
    F.J. Ijsseling, J.M. Krougman, and L.J.P. Drolenga: “The Corrosion Behaviour of the System Cu Ni 10 Fe/Seawater. The Protective Layer of Corrosion Products,” Proc. V Congress International De Corrosion Marina, Spain, 1980, pp. 146–81.Google Scholar
  7. 7.
    R.G. Blundy and M.J. Pryor: “The Potential Dependence of Reaction Product Composition on Copper-Nickel Alloys,” Corros. Sci., 1972, 12(1), pp. 65–75.CrossRefGoogle Scholar
  8. 8.
    D.P. Harvey, II, T.S. Sudarshan, and M.R. Louthan, Jr.: “Effect of pH on Corrosion and Monotonic Loading Behaviour of 90Cu-10Ni in 3.5% Sodium Chloride Solution,” Brit. Corros. J., 1988, 23(1), pp. 61–65.Google Scholar
  9. 9.
    R.N. Parkins: “Predictive Approaches to Stress Corrosion Cracking Failure,” Corros. Sci., 1980, 20(2), pp. 147–66.CrossRefGoogle Scholar
  10. 10.
    N.V. Sidgewick: “Complex Compounds,” Chemical Elements and their Compounds, 1962, Oxford, vol. 1, pp. 241–50.Google Scholar
  11. 11.
    B. Shone: “Problems in Sea-Water Circulating Systems,” Brit. Corros. J., 1974, 9(1), pp. 32–38.Google Scholar

Copyright information

© ASM International 2005

Authors and Affiliations

  • D. C. Agarwal
    • 1
  • S. Sarin
    • 1
  • K. Wadhwa
    • 1
  • R. Vishwakarma
    • 2
  • M. B. Deshmukh
    • 3
  • S. Kurian
    • 4
  1. 1.Institute of Armament TechnologyGirinagarIndia
  2. 2.c/o FMOMumbaiIndia
  3. 3.Ex-Sc “G” DRDO, NMRLAmbernathIndia
  4. 4.c/o Coast Guard HQNew DelhiIndia

Personalised recommendations