Advertisement

Microstructure and grain growth behavior of an aluminum alloy metal matrix composite processed by disintegrated melt deposition

  • 202 Accesses

  • 31 Citations

Abstract

In this study, a silicon-carbide particulate (SiCp), reinforced aluminum alloy-based, metal-matrix composite was synthesized using disintegrated melt deposition. Microstructural characterization of the disintegrated melt deposition processed composite samples revealed the presence of columnar-equiaxed shaped grain structure, noninterconnected porosity associated with the reinforcing carbide particulates, improved interfacial integrity between the reinforcement and the aluminum alloy matrix coupled, and a near uniform distribution of the reinforcing SiC particulates in the alloy matrix. An examination of grain growth with the objective of delineating the effects of the silicon carbide particulates revealed a diminishing to minimal role of the reinforcing phase with an increase in temperature from 450 to 590 °C.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 408

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    A. Mortensen, J.A. Cornie, and M.C. Flemings, J. Met., 1988, p 12–15

  2. 2.

    P.S. Gilman, JOM, Vol 43 (No. 8), 1991, p 7

  3. 3.

    A.L. Geiger and J.A. Walker, JOM, Vol 43 (No. 8), 1991, p 8

  4. 4.

    A.P. Divecha, S.G. Fishman, and S.D. Karmarkar, J. Met., Vol 33, 1981, p 12

  5. 5.

    T.S. Srivatsan, R. Auradkar, and A. Prakash, Eng. Frac. Mech., Vol 40 (No. 2), 1991, p 277–296

  6. 6.

    S. Norose, T. Sasada, and M. Okabe, Proceedings of the 28th Japan Congress on Materials Research, 1985, p 231–240

  7. 7.

    D.L. Davidson, Eng. Frac. Mech., Vol 33 (No. 6), 1989, p 965–975

  8. 8.

    J.K. Shang and R.O. Ritchie, Metall. Trans. A, Vol 20, 1989, p 897

  9. 9.

    S. Suresh, Fatigue of Materials, Oxford University Press, 1991

  10. 10.

    T. Christman and S. Suresh, Mater. Sci. Eng., Vol 102, 1988, p 211–220

  11. 11.

    W.L. Phillips, Proceedings of the 1976 Conference on Composite Materials, B. Noton, Ed., Metallurgical Society of AIME, New York City, 1978, p 567

  12. 12.

    T.G. Nieh, Metall. Trans. A, Vol 15, 1984, p 139

  13. 13.

    G. Gould, Proceedings of the 3rd International Conference on Isostatic Pressing, London, Vol 1, 1986

  14. 14.

    T.S. Srivatsan and T.S. Sudarshan, Ed., Rapid Solidification Technology: An Engineering Guide, Technomic Publishing Co., Inc., 1991

  15. 15.

    W.H. Hunt, Jr., C.R. Cook, and R.R. Sawtell, “Cost Effective High Performance Powder Metallurgy Aluminum Matrix Composites for Automotive Applications,” SAE Technical Paper Series 910834, Warrendale, PA, Feb 1991

  16. 16.

    W.H. Hunt, Jr., “Cost Effective High Performance Aluminum Matrix Composites for Aerospace Applications,” International Conference on PM Aerospace Materials (Laussane, Switzerland), Nov 1991

  17. 17.

    T.S. Srivatsan, T.S. Sudarshan, and E.J. Lavernia, Prog. Mater. Sci., Vol 39 (No. 4/5), 1995, p 317–409

  18. 18.

    L.J. Broutman and R.H. Krock, Modern Composite Materials, Addison Wesley Publishing Co., New York City, 1969

  19. 19.

    P. Kelley, Composites, Vol 10, 1979, p 2

  20. 20.

    M.S. Zedalis, J.D. Bryant, P.S. Gilman, and S.K. Das, JOM, Part 1, Vol 43 (No. 8), 1991, p 29

  21. 21.

    S.H. Hong and K.H. Chung, Key Eng. Mater., Part 2, Vol 104–107, 1995, p 757

  22. 22.

    M. Gupta, C. Lane, and E.J. Lavernia, Scr. Metall. Mater., Vol 26, 1992, p 825

  23. 23.

    M. Gupta, T.S. Srivatsan, F.A. Mohamed, and E.J. Lavernia, J. Mater. Sci., Vol 28, 1993, p 2245

  24. 24.

    M. Gupta, J. Juarez-Islas, W.E. Frazier, F.A. Mohamed, and E.J. Lavernia, Metall. Trans. B., Vol 23, 1992, p 719

  25. 25.

    B. Chalmers, Principles of Solidification, John Wiley & Sons, Inc., 1964, p 253–297

  26. 26.

    Metallography and Microstructures, Vol 9, Metals Handbook, ASM International, 1986, p 632

  27. 27.

    L.N. Thanh and M. Suery, Scr. Metall., Vol 25, 1991, p 2781

  28. 28.

    M. Gupta and M.K. Surappa, Key Eng. Mater., Part 1, Vol 104–107, 1996, p 259

  29. 29.

    I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia, J. Mater. Sci., Vol 26, 1991, p 1137

  30. 30.

    M. Gupta, F.A. Mohamed, and E.J. Lavernia, Int. J. Rapid Solidif., Vol 6, 1991, p 247

  31. 31.

    M. Gupta, F. Mohamed, and E. Lavernia, Metall. Trans. A, Vol 23, 1991, p 831

  32. 32.

    R.J. Arsenault and N. Shi, Mater. Sci. Eng., Vol 81, 1986, p 175

  33. 33.

    P.A. Beck, J.C. Kremer, L.J. Demer, and M.L. Holzworth, Trans. Metal Soc. AIME, Vol 175, 1948, p 372

  34. 34.

    P.A. Beck, J. Appl. Phys., Vol 19, 1948, p 507

  35. 35.

    P.A. Beck, J. Towers, and W.O. Manley, Trans. Metall. Soc. AIME, Vol 175, 1951, p 634

  36. 36.

    R.L. Fullman, Metal Interfaces, American Society for Metals, 1952, p 179

  37. 37.

    P. Cotterill and P.R. Mould, Recrystallization and Grain Growth in Metals, Surrey University Press, 1976, p 275

  38. 38.

    M. Gupta, F. Mohamed, and E. Lavernia, Metall. Trans. A, Vol 23, 1992, p 845

  39. 39.

    X. Liang and E.J. Lavernia, Scr. Metall. Mater., Vol 25, 1991, p 1199

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gupta, M., Srivatsan, T.S. Microstructure and grain growth behavior of an aluminum alloy metal matrix composite processed by disintegrated melt deposition. J. of Materi Eng and Perform 8, 473–478 (1999). https://doi.org/10.1361/105994999770346792

Download citation

Keywords

  • Aluminum alloy
  • composites
  • grain growth
  • metal matrix composite
  • microstructure