Advertisement

Corrosion-fatigue behavior of an annealed AISI 1045 carbon steel coated with electroless nickel-phosphorus

  • A. Pertuz
  • J. A. Chitty
  • E. S. Puchi
  • H. Hintermann
Article

Abstract

The influence of an industrial electroless nickel-phosphorus deposit on the corrosion-fatigue properties of an annealed AISI 1045 steel has been investigated. For this purpose, three corrosive media were selected: distilled water and two NaCl solutions of different concentration (3 and 5%) in distilled water. Corrosion-fatigue tests were conducted at alternating stress levels ranging between 219 and 329 MPa at a frequency of 50 Hz. The corrosion-fatigue properties of the coated and uncoated substrates are very similar when testing is conducted in salty water. However, for testing in distilled water the corrosion-fatigue properties of coated substrates were diminished in relation to the uncoated material. The fractographic analysis of the fracture surfaces revealed the presence of fatigue marks within the electroless nickel-phosphorus deposit, which indicate that the fracture mechanism of the coating is associated to the cyclic loading of the material.

Keywords

AISI 1045 corrosion-fatigue electroless nickel steel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.S. Sudarshan, T.S. Srivatsan, and D.P. Harvey II, Eng. Fracture. Mech., Vol 36, 1990, p 827CrossRefGoogle Scholar
  2. 2.
    Y. Hirose and T. Mura, Eng. Fract. Mech., Vol 22, 1985, p 859CrossRefGoogle Scholar
  3. 3.
    D.J. McAdam and G.W. Geil, Proc. ASTM 41, 1941, p 696Google Scholar
  4. 4.
    F.D. Bogar and T.W. Crooker, Mater. Perform., Vol 37, 1983Google Scholar
  5. 5.
    W. Field, R.N. Duncan, and J.R. Zickgraf, Electroless Plating, American Society for Metals, 1984, p 223Google Scholar
  6. 6.
    E.G. Broziet, H. Heinke, and H. Wiegand, Metallurgia, Vol 25, 1971, p 1110Google Scholar
  7. 7.
    J.A. Chitty, A. Pertuz, E.S. Puchi, M. Staia, and H.E. Hintermann, Thin Solid Films, Vol 308–309, 1997, p 430CrossRefGoogle Scholar
  8. 8.
    J.A. Chitty, A. Pertuz, H. Hintermann, and E.S. Puchi, J. Mater. Eng. Performance, Vol 8(1), 1999, p 83CrossRefGoogle Scholar
  9. 9.
    J.L. Carbajal and R. White, J. Electrochem. Sci. Technol., Vol 12, 1988, p 2952CrossRefGoogle Scholar
  10. 10.
    E.S. Puchi, M.H. Staia, H.E. Hintermann, A. Pertuz, and J.A. Chitty, Thin Solid Films, Vol 290–291, 1996, p 370CrossRefGoogle Scholar
  11. 11.
    O.H. Basquin, Proc. ASTM, Part 2, Vol 10, 1910, p 625Google Scholar

Copyright information

© ASM International 1999

Authors and Affiliations

  • A. Pertuz
    • 1
  • J. A. Chitty
    • 1
  • E. S. Puchi
    • 1
  • H. Hintermann
    • 2
  1. 1.Central University of VenezuelaLos Chaguaramos, CaracasVenezuela
  2. 2.Faculty of SciencesUniversity of NeuchâtelNeuchâtelSwitzerland

Personalised recommendations