Advertisement

Chinese Science Bulletin

, Volume 50, Issue 15, pp 1669–1672 | Cite as

A conserved inverted repeat from rice plastome functions as an intrinsic transcription terminator

  • Lin Chi-Hui
  • Liang Yu-Jin
  • Chen Liang-Jwu
Brief Communications
  • 23 Downloads

Abstract

Results from a previous rice transcription mapping and the GeSTer algorithm analysis used in this in-vestigation for rice plastid genome suggest that an inverted repeat, IRsl8, in 3′ region of the plastid rps18 gene may serve as a transcription terminator. The in vitro transcription assay showed that the transcript ending at the IRsl8 was not proc-essed by ribonucleases but terminated intrinsically in an rNTP substrate-dependent manner as demonstrated for the first time in plant gene regulation. For the poly-T tract (TTCTTTTTT) 3′-proximal to the IRsl8, the C base conver-sion to T resulting in a perfect 9 Ts can dramatically increase termination efficiency, which is a common feature of bacte-rial intrinsic termination. This study is the first case to indi-cate that a conserved inverted repeat with a poly-T tract from higher plant chloroplast contributes to transcription termination of the translation-associated rps18 gene in a manner with the intrinsic termination, probably resulting from a heritage of endosymbiosis.

Keywords

intrinsic transcription termination inverted repeatkw]rice chloroplast rps18 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gruissem, W., Tonkyn, J. C., Control mechanisms of plastid gene expression, Crit. Rev. Plant Sci., 1993, 12(1–2): 19–55.CrossRefGoogle Scholar
  2. 2.
    Hess, W. R., Borner, T., Organellar RNA polymerases of higher plants, Int. Rev. Cytol., 1999, 190: 1–59.CrossRefGoogle Scholar
  3. 3.
    Hedtke, B., Borner, T., Weihe, A., Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis, Science, 1997, 277: 809–811.CrossRefGoogle Scholar
  4. 4.
    Goldschmidt-Clermont, M., Coordination of nuclear and chloro-plast gene expression in plant cells, Int. Rev. Cytol., 1998, 177: 115 -180.CrossRefGoogle Scholar
  5. 5.
    Stern, D. B., Gruissem, W., Control of plastid gene expression: 3′ inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription, Cell, 1987, 51(6): 1145–1157.CrossRefGoogle Scholar
  6. 6.
    Chen, L. J., Orozco, E. M., Jr., Recognition of prokaryotic tran-scription terminators by spinach chloroplast RNA polymerase, Nu-cleic Acids Res., 1988, 16(17): 8411–8431.CrossRefGoogle Scholar
  7. 7.
    Drager, R. G., Zeidler, M., Simpson, C. L. et al., A chloroplast transcript lacking the 3′ inverted repeat is degraded by 3′− >5′ exo-ribonuclease activity, RNA, 1996, 2(7): 652–663.Google Scholar
  8. 8.
    Magee, A. M., Kavanagh, T. A., Plastid genes transcribed by the nucleus-encoded plastid RNA polymerase show increased tran-script accumulation in transgenic plants expressing a chloro-plast-localized phage T7 RNA polymerase, J. Exp. Bot., 2002, 53(379): 2341–2349.CrossRefGoogle Scholar
  9. 9.
    Unniraman, S., Prakash, R., Nagaraja, V., Conserved economics of transcription termination in eubacteria, Nucleic Acids Res., 2002, 30(3): 675–684.CrossRefGoogle Scholar
  10. 10.
    Kanno, A., Hirai, A., A transcription map of the chloroplast genome from rice (Oryza sativa), Curr. Genet., 1993, 23(2): 166–174.CrossRefGoogle Scholar
  11. 11.
    Chen, L. J., Quantifying termination of transcription by spinach chloroplast RNA polymerase using supercoiled templates contain-ing tandem copies of the thra terminator, Bot. Bull. Acad. Sin., 1995, 36: 95–100.Google Scholar
  12. 12.
    Brennan, S. M., Ribonucleoside triphosphate concentration-de-pendent termination of bacteriophage SP01 transcription in vitro by Bacillus subtilis RNA polymerase, Virology, 1984, 135: 555–560.CrossRefGoogle Scholar
  13. 13.
    Gruissem, W., Zurawski, G., Analysis of promoter regions for the spinach chloroplast rbcL, atpB and psbA genes, EMBO J., 1985, 4: 3375–3383.Google Scholar
  14. 14.
    Bligny, M., Courtois, F., Thaminy, S. et al., Regulation of plastid rDNA transcription by interaction of CDF2 with two different RNA polymerases, EMBO J., 2000, 19(8): 1851–1860.CrossRefGoogle Scholar
  15. 15.
    Foster, J. E., Holmes, S. F., Erie, D. A., Allosteric binding of nu-cleoside triphosphates to RNA polymerase regulates transcription elongation, Cell, 2001, 106(2): 243–252.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  1. 1.Institute of Molecular BiologyNational Chung-Hsing UniversityTaiwan, China
  2. 2.Institute of ChemistryAcademia SinicaTaipeiTaiwan, China

Personalised recommendations