Skip to main content
Log in

The secretion of lecithinase of Pseudomonas alcaligenes S2 was via type II secretion pathway

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

Strain S2 is a lecithin (or phosphatidylcholine)-solubilizing bacterium, which was isolated from the rice rhizosphere in rural areas of Beijing, China. On the basis of a polyphasic study involving phenotypic tests, physiological and biochemical tests, 16S rDNA sequence analysis, G+C content determination and DNA-DNA hybridizations analysis, strain S2 was identified as Pseudomonas alcaligenes. P. alcaligenes S2 was mutagenized with Tn5 and four mutants showing decreased or increased solubilizing ability of lecithin were isolated based on the halo size around colonies on the solid plate supplemented with egg yolk. To characterize the genes of P. alcaligenes S2 involved in solubilization of lecithin, the EcoR I fragments of the chromosomes from the four mutant strains carrying a single transposon were cloned, and the DNA sequences flanking the Tn5 were determined. The Tn5 insertion sites in the mutants M808, M1329 and M1400, showing decreased solubilizing ability of lecithin, were found to be located in the xcpS, xcpX and xcpW, respectively, whose products XcpS, XcpX and XcpW were the components of type II secretion pathway. Complementation of xcpS, xcpX and xcpW could restore the corresponding mutants M808, M1329 and M1400 to solubilize lecithin. The data suggested that mutation in one of these xcp genes would lead to the absence of mature lecithinase secretion into the extracellular medium. The data also indicated that the secretion of lecithin-hydrolyzing enzyme of P. alcaligeneswas via type II secretion pathway. In the mutant M20 showing increasing lecithin-hydrolyzing activity, the interrupted gene showed 86% identity with chpA of Pseudomonas aeruginosa PAO1, whose product plays an important role in controlling twitching motility of the bacterial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rodriguez, H., Fraga, R., Phosphate solubilizing bacteria and their role in plant growth promotion, Biotechnol. Adv., 1999, 17: 319–339.

    Article  Google Scholar 

  2. Turner, B. L., Cade-Menum, B. J., Westermann, D. T., Organic phosphorus Composition and potential bioavailability in semi-arid arable soils of the western United States, Soil Sci. Soc. AM. J., 2003, 67: 1168–1179.

    Google Scholar 

  3. Abd-Alla, M. H., Use of organic phosphorus by Rhizobium leguminosarum biovar. viceae phosphatases, Biol. Fertil. Soils, 1994, 18: 216–218.

    Article  Google Scholar 

  4. Thaller, M. C., Berlutti, F., Schippa, S. et al., Heterogeneous patterns of acid phosphatases containing low-molecular-mass polipeptides in members of the family Enterobacteriaceae, Int. J. Syst. Bacteriol., 1995, 4: 255–261.

    Google Scholar 

  5. Skrary, F. A., Cameron, D. C., Purification and characterization of a Bacillus licheniformis phosphatase specific for D-alpha-glycerphosphate, Arch. Biochem. Biophys., 1998, 349: 27–35.

    Article  Google Scholar 

  6. Richardson, A. E., Hadobas, P. A., Soil isolates of Pseudomonas spp. that utilize inositol phosphates, Can. J. Microbial., 1997, 43: 509–516.

    Article  Google Scholar 

  7. Thaler, J. O., Duvic, B., Givaudan, A., Isolation and entomotoxic properties of the Xenorhabdus nematophilus F1 lecithinase, Appl. Environ. Microbiol., 1998, 64: 2367–2373.

    Google Scholar 

  8. Wolk, C. P., Cai, Y., Jean-michel, P., Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in a cyanobacterium, Proc. Nat. Acad. Sci. USA, 1991, 88: 5355–5359.

    Article  Google Scholar 

  9. Staskawicz, B. D., Dahlbeck, N. K., Napoli, C., Molecular characterization of cloned a virulence genes from race 0 and race 1 of Pseudomonas syringae pv. Glycinea, J. Bacteriol., 1987, 169: 5789–5794.

    Google Scholar 

  10. Buchanan, R. E., Gibbons, N. E., Genus II, Pseudomonas, in Bergey’s Manual of Systematic Bacteriology (eds. Krieg, N. R., Holt, J. G.), Baltimore: Williams Wilkins, 1984, 1: 141–198.

    Google Scholar 

  11. Brenner, D. J., McWhorter, A. C., Knutson, J. K., et al., Escherichia vulneris: A species of Enterobacteriaceae associated with human wounds, J. Clin. Microbiol., 1982, 15, 133–1140.

    Google Scholar 

  12. Crosa, J. H., Brenner, D. J., Falkow, S., Use of a single-strand specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homoduplex and heteroduplex, J. Bacteriol., 1973, 115: 904–911.

    Google Scholar 

  13. Marmur, J., Doty, P., Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature, J. Mol. Biol., 1962, 5: 109–118.

    Article  Google Scholar 

  14. Kim, K., Lee, S., Lee, K. et al., Isolation and characterization of toluene-sensitive mutants from the toluene-resistant bacterium Pseudomonas putida GM73, J. Bacteriol., 1998, 180: 3692–3696.

    Google Scholar 

  15. Sambrook, J., Russell, D. W., Molecular cloning: A laboratory manual, 3rd ed, New York: Cold Spring Harbor Laboratory Press, 2001.

    Google Scholar 

  16. Olsen, S. R., Sommers, L. E., Phosphorus, in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties (eds. Page, A. L., Miller, R. H., Keeney, D. R.), 2nd ed, Madison: ASA-SSSA, 1982, 9 (2): 403–430.

    Google Scholar 

  17. Wretlind, B., Pavlovskis, O. R., Genetic mapping and characterization of Pseudomonas aeruginosa mutants defective in the formation of extracellular proteins, J. Bacteriol., 1984, 158: 801–808.

    Google Scholar 

  18. Ball, G., Durand, E., Lazdunski, A., A novel type II secretion system in Pseudomonas aeruginosa, Mol. Microbiol., 2002, 43: 475–485.

    Article  Google Scholar 

  19. Filloux, A., Michel, G., Bally, M., GSP-dependent protein secretion in Gram-negative bacteria: The Xcp machinery of Pseudomonas aeruginosa, FEMS Microbiol. Rev., 1998, 22: 177–198.

    Article  Google Scholar 

  20. Thanassi, D. G., Hultgren, S. J., Multiple pathways allow protein secretion across the bacterial outer membrane, Curr. Opin. Cell Biol., 2000, 12: 420–430.

    Article  Google Scholar 

  21. Pugsley, A. P., The complete general secretory pathway in Gram negative bacteria, Microbiol. Rev., 1993, 57: 50–108.

    Google Scholar 

  22. Duong, F., Soscia, A., Lazdunski, A., et al., The Pseudomonas fluorescens lipase has a C-terminal secretion signal and is secreted by a three-component bacterial ABC-exporter system, Mol. Microbiol., 1994, 11: 1117–1126.

    Article  Google Scholar 

  23. Bitter, W., Koster, M., Tommassen, J., Formation of oligomeric rings by XcpQ and PhilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa, Mol. Microbiol., 1998, 27: 209–219.

    Article  Google Scholar 

  24. Duong, F., Bonnet, E., Geli, V., The AprX protein of Pseudomonas aeruginosa: A new substrate for the Apr type I secretion system, Gene, 2001, 262: 147–153.

    Article  Google Scholar 

  25. Frank, D. W., The exoenzyme S regulon of Pseudomonas aeruginosa, Mol. Microbiol., 1997, 26: 621–629.

    Article  Google Scholar 

  26. Akatsuka, H., Kawai, E., Omori, K., The three genes lipB, lipC, and lipD involved in the extracellular secretion of the Serratia marcescens lipase which lacks an N-terminal signal peptide, J. Bacteriol., 1995, 177: 6381–6389.

    Google Scholar 

  27. Kawai, E., Idei, A., Kumura, H. et al., The ABC-exporter genes involved in the lipase secretion are clustered with the genes for lipase, alkaline protease, and serine protease homologues in Pseudomonas fluorescens, Biochim. Biophys. acta, 1999, 1446: 377–382.

    Google Scholar 

  28. Whitchurch, C. B., Leech, A. J., Young, M. D. et al., Characterization of a complex chemosensory signal transduction system which controls twitching motility in Pseudomonas aeruginosa, Mol. Microbiol., 2004, 52: 873–893.

    Article  Google Scholar 

  29. Cynthia, B. W., Andrew, J. L., Michael, D. Y., Characterization of a complex chemosensory signal transduction system which controls twitching motility in Pseudomonas aeruginosa, Mol. Microbiol., 2004, 52: 873–893.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanfeng Chen.

About this article

Cite this article

Lü, J., Li, F., Chen, S. et al. The secretion of lecithinase of Pseudomonas alcaligenes S2 was via type II secretion pathway. Chin.Sci.Bull. 50, 1731–1736 (2005). https://doi.org/10.1360/982005-548

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1360/982005-548

Keywords

Navigation