Chinese Science Bulletin

, Volume 50, Issue 17, pp 1823–1828 | Cite as

First-principles study of the effects of Si doping on geometric and electronic structure of closed carbon nanotube

  • Zhou Junzhe
  • Wang Chongyu


The effects of Si doping on geometric and electronic structure of closed carbon nanotube (CNT) are studied by, a first-principles method, DMol. It is found that the local density of states at the Fermi level (E F) increases due to the Si-doping and the non-occupied states above the EF go down toward the lower energy range under an external electronic field. In addition, due to the doping of Si, a sub-tip on the CNT cap is formed, which consisted of the Si atom and its neighbor C atoms. From these results it is concluded that Si-doping is beneficial to the CNT field emission properties.


carbon nanotube doping electronic structure field emission 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iijima, S., Helical microtubules of graphitic carbon, Nature (London), 1991, 354: 56–58.CrossRefGoogle Scholar
  2. 2.
    de Heer, W. A., Châtelain, A., Ugarte, D., A carbon nanotube field-emission electron source, Science, 1995, 270: 1179–1180.CrossRefGoogle Scholar
  3. 3.
    Gao Han, Mu Chen, Wang Fan et al., Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template, Journal of Applied Physics, 2003, 93(9): 5602.CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Shaw, D. T., Guo, L.P., Field emission of different oriented carbon nanotubes, Applied Physics Letters, 2000, 76(17): 2469–2471.CrossRefGoogle Scholar
  5. 5.
    Gao, R. P., Pan, Z. W., Wang, Z. L., Work function at the tips of multiwalled carbon nanotubes, Applied Physics Letters, 2001, 78(12): 1757–1759.CrossRefGoogle Scholar
  6. 6.
    Choi, W. B., Chung, D. S., Kang, J. H. et al., Fully sealed, high-brightness carbon-nanotube field-emission display, Applied Physics Letters, 1999, 75(20): 3129–3131.CrossRefGoogle Scholar
  7. 7.
    Carroll, D. L., Redlich, P., Ajayan, P. M. et al., Electronic structure and localized states at carbon nanotube tips, PhysRevLett., 1997, 78:2811–2814.Google Scholar
  8. 8.
    Buldum, A., Lu, J. P., Electron field emission properties of closed carbon nanotubes, PhysRevLett., 2003, 91: 236801.Google Scholar
  9. 9.
    Kim, C., Kim, B., Lee, S. M. et al., Electronic structures of capped carbon nanotubes under electric fields, PhysRevB., 2002, 65: 165418.Google Scholar
  10. 10.
    Park, N., Han, S., Ihm, J., Effects of oxygen adsorption on carbon nanotube field emitters, PhysRevB., 2001, 64: 125401.Google Scholar
  11. 11.
    Akdim, B., Duan, X. F., Pachter, R., The effects of O2 adsorbates on field emission properties of single-wall carbon nanotubes, Nano Letters, 2003, 3(9): 1209–1214.CrossRefGoogle Scholar
  12. 12.
    Maiti, A., Andzelm, J., Tanpipat, N., Effect of adsorbates on field emission from carbon nanotubes, PhysRevLett., 2001, (87): 155502.Google Scholar
  13. 13.
    Zhou, G., Kawazoe, Y., Localized valence states characteristics and work function of single-walled carbon nanotubes, PhysRevB., 2001, 65: 155422.Google Scholar
  14. 14.
    Zhou Gang, Duan Wenhui, Gu Binglin, Electronic structure and field-emission characteristics of open-ended single-walled carbon nanotubes, PhysRevLett., 2001, 87: 095504.Google Scholar
  15. 15.
    Zhang Gang, Duan Wenhui, Gu Binglin, Effect of substitutional atoms in the tip on field-emission properties of capped carbon nanotubes, Applied Physics Letters, 2002, 80(14): 2589–2591.CrossRefGoogle Scholar
  16. 16.
    Temple, D., Recent progress in field emitter array development for high performance applications, Materials Science and Engineering, 1999, R24: 185–239.Google Scholar
  17. 17.
    Bonard, J., Dean, K. A., Coll, B. F. et al., Field emission of individual carbon nanotubes in the scanning electron microscope, PhysRevLett., 2002, 89: 197602.Google Scholar
  18. 18.
    Zheng Xiao, Chen GuanHua, Li Zhibing et al., Quantum-mechanical investigation of field-emission mechanism of a micrometer-long single-walled carbon nanotube, PhysRevLett., 2004, 92: 106803.Google Scholar
  19. 19.
    Fye, J. L., Jarrold, M. F., Structures of silicon-doped carbon clusters, J. Phys. Chem., 1997, (101): 1836–1840.Google Scholar
  20. 20.
    Billas, I. M. L., Massobrio, C., Boero, M. et al., First principles calculations of Si doped fullerenes: Structural and electronic localization properties in C59Si and C58Si2, J.Chem. Phys., 1999, (111): 6787–6796.Google Scholar
  21. 21.
    Baierle, R. J., Fagan, S. B. Mota, R. et al., Electronic and structural properties of silicon-doped carbon nanotubes, PhysRevB., 2001, 64: 085413.Google Scholar
  22. 22.
    Mavrandonakis, A., Froudakis, G. E., Schnell, M. et al., From pure carbon to silicon-carbon nanotubes: An Ab-initio study, Nano Letters, 2003, 3(11): 1481–1484.CrossRefGoogle Scholar
  23. 23.
    Fagan, S. B., Mota, R., da Silva, A. J. R. et al., Substitutional Si doping in deformed carbon nanotubes, Nano Letters, 2004, O(O): A-C.Google Scholar
  24. 24.
    Delley, B., An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys., 1990, 92: 508.CrossRefGoogle Scholar
  25. 25.
    Becke, A. D., A multicenter numerical integration scheme for polyatomic molecules, J. Chem. Phys., 1988, 88: 2547.CrossRefGoogle Scholar
  26. 26.
    Lee Chengteh, Yang Weitao, Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, PhysRevB., 1988, 37: 785.Google Scholar
  27. 27.
    Dyke, W. P., Dolan, W. W., Field emission, Adv. Elec. El. Phys., 1956, (8): 89.Google Scholar
  28. 28.
    The data are from the website www.webelements.comGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  1. 1.Department of PhysicsTsinghua UniversityBeijingChina
  2. 2.International Centre for Materials PhysicsChinese Academy of SciencesShenyangChina

Personalised recommendations