Advertisement

Chinese Science Bulletin

, Volume 50, Issue 24, pp 2866–2871 | Cite as

Decrease trend of dust event frequency over the past 200 years recorded in the Malan ice core from the northern Tibetan Plateau

  • Ninglian Wang
Articles
  • 36 Downloads

Abstract

By analyses of the dust layers in the Malan ice core from the northern Tibetan Plateau, it was found that dirty ratio in this core might be a good proxy for dust event frequency. The variations in the dirty ratio displayed a decrease trend over the past 200 years, which implies that dust events became less frequent during the study period. The decrease trend in the variations in dust event frequency might be caused mostly by the natural processes, including increasing precipitation and weakening westerly which might be related with global warming. Furthermore, significant negative correlation was found between the dirty ratio and °18O in the Malan ice core. This is highly important for studying the effect of atmospheric dust on climate change.

Keywords

dust event climate change Malan ice core Tibetan Plaeau 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prospero, J. M., Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States, Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7): 3396–3403.PubMedCrossRefGoogle Scholar
  2. 2.
    Uno, I., Amano, H., Emori, S. et al., Trans-Pacific yellow sand transport observed in April 1998: A numerical simulation, Journal of Geophysical Research, 2001, 106(D16): 18331–18341.CrossRefGoogle Scholar
  3. 3.
    Grousset, F. E., Ginoux, P., Bory, A. et al., Case study of a Chinese dust plume reaching the French Alps, Geophysical Research Letters, 2003, 30(6): 1277, doi: 10.1029/2002GL016833.CrossRefGoogle Scholar
  4. 4.
    Bory, A. J. M., Biscaye, P. E., Grousset, F. E., Two distinct seasonal Asian source regions for mineral dust deposited in Greenland (NorthGRIP), Geophysical Research Letters, 2003, 30(4): 1167, doi: 10.1029/2002GL016446.CrossRefGoogle Scholar
  5. 5.
    Fraser, R. S., Kaufman, Y. J., The relative importance of aerosol scattering and absorption in remote sensing, IEEE Transactions on Geoscience and Remote Sensing, 1985, 23: 625–633.CrossRefGoogle Scholar
  6. 6.
    Sokolik, I. N., Toon, O. B., Direct radiative forcing by anthropogenic airborne mineral aerosol, Nature, 1996, 381: 681–683.CrossRefGoogle Scholar
  7. 7.
    Alpert, P., Kaufman, Y. J., Shay-el, Y. et al., Quantification of dust-forced heating of the lower troposphere, Nature, 1998, 395(6700): 367–370.CrossRefGoogle Scholar
  8. 8.
    Satheesh, S. K., Ramanathan, V., Large differences in tropical aerosol forcing at the top of the atmosphere and Earth’s surface, Nature, 2000, 405(6782): 60–63.PubMedCrossRefGoogle Scholar
  9. 9.
    Kaufman, Y. J., Tanré, D., Dubovik, O. et al., Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing, Geophysical Research Letters, 2001, 28(8): 1479–1482.CrossRefGoogle Scholar
  10. 10.
    Kinne, S., Pueschel, R., Aerosol radiative forcing for Asian continental outflow, Atmospheric Environment, 2001, 35(30): 5019–5028.CrossRefGoogle Scholar
  11. 11.
    Rosenfeld, D., Rudich, Y., Lahav, R., Desert dust suppressing precipitation: A possible desertification feedback loop, Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(11): 5975–5980.PubMedCrossRefGoogle Scholar
  12. 12.
    Ramanathan, V., Crutzen, P. J., Kiehl, J. T. et al., Aerosols, climate, and the hydrological cycle, Science, 2001, 294(5549): 2119–2124.PubMedCrossRefGoogle Scholar
  13. 13.
    Kaufman, Y. J., Tanré, D., Boucher, O., A satellite view of aerosols in the climate system, Nature, 2002, 419(6903): 215–223.PubMedCrossRefGoogle Scholar
  14. 14.
    Mahowald, N. M., Kiehl, L. M., Mineral aerosol and cloud interaction, Geophysical Research Letters, 2003, 30(9): 1475, doi: 10.1029/2002GL016762.CrossRefGoogle Scholar
  15. 15.
    Penner, J. E., Dong, X., Chen, Y., Observational evidence of a change in radiative forcing due to the indirect aerosol effect, Nature, 2004, 427(6971): 231–234.PubMedCrossRefGoogle Scholar
  16. 16.
    Sassen, K., Indirect climate forcing over the western US from Asian dust storms, Geophysical Research Letters, 2002, 29(10), doi: 10.1029/2001GL014051.Google Scholar
  17. 17.
    Sassen, K., DeMott, P. J., Prospero, J. M. et al., Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results, Geophysical Research Letters, 2003, 30(12): 1633, doi: 10.1029/2003GL017371.CrossRefGoogle Scholar
  18. 18.
    DeMott, P. J., Sassen, K., Poellot, M. R. et al., African dust aerosols as atmospheric ice nuclei, Geophysical Research Letters, 2003, 30(14): 1732, doi: 10.1029/2003GL017410.CrossRefGoogle Scholar
  19. 19.
    Martin, J. H., Glacial-interglacial CO2 change: The iron hypothesis, Paleoceanography, 1990, 5(1): 1–13.CrossRefGoogle Scholar
  20. 20.
    Martin, J. H., Coale, K. H., Johnson, K. S. et al., Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean, Nature, 1994, 371: 123–129.CrossRefGoogle Scholar
  21. 21.
    Watson, A. J, Bakker, D. C. E., Ridgwell, A. J. et al., Effect of iron supply on southern ocean CO2 uptake and implications for glacial atmospheric CO2, Nature, 2000, 407(6805): 730–733.PubMedCrossRefGoogle Scholar
  22. 22.
    Prospero, J. M., Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality, Journal of Geophysical Research, 1999, 104(D13): 15917–15927.CrossRefGoogle Scholar
  23. 23.
    Hu Ke, Wu Donghui, Yang Deming et al., Preliminary study of ecological effects of remote small sand descending on Urban area, Journal of Changchun University of Science and Technology (in Chinese), 2001, 31(2): 176–179.Google Scholar
  24. 24.
    Yao Tandong, Xiang Shurong, Zhang Xiaojun et al., Microbiological characteristics recorded by Malan and Puruogangri ice cores, Quaternary Science (in Chinese), 2003, 23(2): 193–199.Google Scholar
  25. 25.
    Mahowald, N., Kohfeld, K., Hansson, M. et al., Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments, Journal of Geophysical Research, 1999, 104(D13): 15895–15916.CrossRefGoogle Scholar
  26. 26.
    Werner, M., Tegen, I., Harrison, S. P. et al., Seasonal and interannual variability of the mineral dust cycle under present and glacial climate conditions, Journal of Geophysical Research, 2002, 107(D14): 4744, doi:10.1029/2002JD002365.CrossRefGoogle Scholar
  27. 27.
    Qian Zhengan, Song Minhong, Li Wanyuan, Analyses on distributive variation and forecast of sand-dust storms in recent 50 years in north China, Journal of Desert Research (in Chinese), 2002, 22(2): 106–111.Google Scholar
  28. 28.
    Wang Shigong, Wang Jinyan, Zhou Zijiang et al., Regional characteristics of dust events in China, Acta Geographica Sinica (in Chinese), 2003, 58(2): 193–200.Google Scholar
  29. 29.
    Zhou Zijiang, Zhang Guocai, Typical severe dust storms in northern China during 1954–2002, Chinese Science Bulletin, 2003, 48(21): 2366–2370.CrossRefGoogle Scholar
  30. 30.
    Zhang, X. Y., Gong, S. L., Zhao, T. L. et al., Sources of Asian dust and role of climate change versus desertification in Asian dust emission, Geophysical Research Letters, 2003, 30(24): 2272, doi:10.1029/2003GL018206.CrossRefGoogle Scholar
  31. 31.
    Yao Tandong, Jiao Keqin, Huang Cuilan et al., Environmental records in ice cores and their spatial coupling features, Quaternary Science (in Chinese), 1995, 15(1): 23–29.Google Scholar
  32. 32.
    Wang Ninglian, Yao Tandong, Pu Jianchen et al., Variations in air temperature during the last 100 years revealed by δ18O in the Malan ice core from the Tibetan Plateau, Chinese Science Bulletin, 2003, 48(19): 2134–2138.CrossRefGoogle Scholar
  33. 33.
    He Qing, Yang Qing, Li Hongjun, Variations of air temperature, precipitation and sand-dust weather in Xinjiang in past 40 years, Journal of Glaciology and Geocryology (in Chinese), 2003, 25(4): 423–427.Google Scholar
  34. 34.
    Zhang De’er, Anatomy of “dust rain” in history, Chinese Science Bulletin (in Chinese), 1982, 27(5): 294–297.Google Scholar
  35. 35.
    Yao Tandong, Yang Zhihong, Jiao Keqin et al., A study of climate and environment in the past 2000 years based on ice core, Earth Science Frontiers (in Chinese), 1997, 4(1-2): 95–100.Google Scholar
  36. 36.
    Thompson, L. G., Climatic change for the last 2000 years inferred from ice-core evidence in tropical ice cores, in Climatic Variations and Forcing Mechanisms of the Last 2000 Years (eds., Jones, P. D., Bradley, R. S., Jouzel, I), Berlin: Springer-Verlag, 1996, 281–295.Google Scholar
  37. 37.
    Shao Xuemei, Huang Lei, Liu Hongbin et al., Reconstruction of precipitation variation from tree rings in recent 1000 years in Delingha, Qinghai, Science in China, Ser. D, 2005, 48(7): 939–949.CrossRefGoogle Scholar
  38. 38.
    Engelstaedter, S., Kohfeld, K. E., Tegen, I. et al., Controls of dust emissions by vegetation and topographic depressions: An evaluation using dust storm frequency data, Geophysical Research Letters, 2003, 30(6): 1294, doi:10.1029/2002GL016471.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  1. 1.Key Laboratory of Cryosphere and Environment, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina
  2. 2.Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina

Personalised recommendations