Skip to main content
Log in

Decrease trend of dust event frequency over the past 200 years recorded in the Malan ice core from the northern Tibetan Plateau

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

By analyses of the dust layers in the Malan ice core from the northern Tibetan Plateau, it was found that dirty ratio in this core might be a good proxy for dust event frequency. The variations in the dirty ratio displayed a decrease trend over the past 200 years, which implies that dust events became less frequent during the study period. The decrease trend in the variations in dust event frequency might be caused mostly by the natural processes, including increasing precipitation and weakening westerly which might be related with global warming. Furthermore, significant negative correlation was found between the dirty ratio and °18O in the Malan ice core. This is highly important for studying the effect of atmospheric dust on climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prospero, J. M., Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States, Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7): 3396–3403.

    Article  PubMed  CAS  Google Scholar 

  2. Uno, I., Amano, H., Emori, S. et al., Trans-Pacific yellow sand transport observed in April 1998: A numerical simulation, Journal of Geophysical Research, 2001, 106(D16): 18331–18341.

    Article  CAS  Google Scholar 

  3. Grousset, F. E., Ginoux, P., Bory, A. et al., Case study of a Chinese dust plume reaching the French Alps, Geophysical Research Letters, 2003, 30(6): 1277, doi: 10.1029/2002GL016833.

    Article  Google Scholar 

  4. Bory, A. J. M., Biscaye, P. E., Grousset, F. E., Two distinct seasonal Asian source regions for mineral dust deposited in Greenland (NorthGRIP), Geophysical Research Letters, 2003, 30(4): 1167, doi: 10.1029/2002GL016446.

    Article  Google Scholar 

  5. Fraser, R. S., Kaufman, Y. J., The relative importance of aerosol scattering and absorption in remote sensing, IEEE Transactions on Geoscience and Remote Sensing, 1985, 23: 625–633.

    Article  Google Scholar 

  6. Sokolik, I. N., Toon, O. B., Direct radiative forcing by anthropogenic airborne mineral aerosol, Nature, 1996, 381: 681–683.

    Article  CAS  Google Scholar 

  7. Alpert, P., Kaufman, Y. J., Shay-el, Y. et al., Quantification of dust-forced heating of the lower troposphere, Nature, 1998, 395(6700): 367–370.

    Article  CAS  Google Scholar 

  8. Satheesh, S. K., Ramanathan, V., Large differences in tropical aerosol forcing at the top of the atmosphere and Earth’s surface, Nature, 2000, 405(6782): 60–63.

    Article  PubMed  CAS  Google Scholar 

  9. Kaufman, Y. J., Tanré, D., Dubovik, O. et al., Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing, Geophysical Research Letters, 2001, 28(8): 1479–1482.

    Article  Google Scholar 

  10. Kinne, S., Pueschel, R., Aerosol radiative forcing for Asian continental outflow, Atmospheric Environment, 2001, 35(30): 5019–5028.

    Article  CAS  Google Scholar 

  11. Rosenfeld, D., Rudich, Y., Lahav, R., Desert dust suppressing precipitation: A possible desertification feedback loop, Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(11): 5975–5980.

    Article  PubMed  CAS  Google Scholar 

  12. Ramanathan, V., Crutzen, P. J., Kiehl, J. T. et al., Aerosols, climate, and the hydrological cycle, Science, 2001, 294(5549): 2119–2124.

    Article  PubMed  CAS  Google Scholar 

  13. Kaufman, Y. J., Tanré, D., Boucher, O., A satellite view of aerosols in the climate system, Nature, 2002, 419(6903): 215–223.

    Article  PubMed  CAS  Google Scholar 

  14. Mahowald, N. M., Kiehl, L. M., Mineral aerosol and cloud interaction, Geophysical Research Letters, 2003, 30(9): 1475, doi: 10.1029/2002GL016762.

    Article  Google Scholar 

  15. Penner, J. E., Dong, X., Chen, Y., Observational evidence of a change in radiative forcing due to the indirect aerosol effect, Nature, 2004, 427(6971): 231–234.

    Article  PubMed  CAS  Google Scholar 

  16. Sassen, K., Indirect climate forcing over the western US from Asian dust storms, Geophysical Research Letters, 2002, 29(10), doi: 10.1029/2001GL014051.

  17. Sassen, K., DeMott, P. J., Prospero, J. M. et al., Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results, Geophysical Research Letters, 2003, 30(12): 1633, doi: 10.1029/2003GL017371.

    Article  Google Scholar 

  18. DeMott, P. J., Sassen, K., Poellot, M. R. et al., African dust aerosols as atmospheric ice nuclei, Geophysical Research Letters, 2003, 30(14): 1732, doi: 10.1029/2003GL017410.

    Article  Google Scholar 

  19. Martin, J. H., Glacial-interglacial CO2 change: The iron hypothesis, Paleoceanography, 1990, 5(1): 1–13.

    Article  Google Scholar 

  20. Martin, J. H., Coale, K. H., Johnson, K. S. et al., Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean, Nature, 1994, 371: 123–129.

    Article  CAS  Google Scholar 

  21. Watson, A. J, Bakker, D. C. E., Ridgwell, A. J. et al., Effect of iron supply on southern ocean CO2 uptake and implications for glacial atmospheric CO2, Nature, 2000, 407(6805): 730–733.

    Article  PubMed  CAS  Google Scholar 

  22. Prospero, J. M., Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality, Journal of Geophysical Research, 1999, 104(D13): 15917–15927.

    Article  CAS  Google Scholar 

  23. Hu Ke, Wu Donghui, Yang Deming et al., Preliminary study of ecological effects of remote small sand descending on Urban area, Journal of Changchun University of Science and Technology (in Chinese), 2001, 31(2): 176–179.

    CAS  Google Scholar 

  24. Yao Tandong, Xiang Shurong, Zhang Xiaojun et al., Microbiological characteristics recorded by Malan and Puruogangri ice cores, Quaternary Science (in Chinese), 2003, 23(2): 193–199.

    Google Scholar 

  25. Mahowald, N., Kohfeld, K., Hansson, M. et al., Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments, Journal of Geophysical Research, 1999, 104(D13): 15895–15916.

    Article  Google Scholar 

  26. Werner, M., Tegen, I., Harrison, S. P. et al., Seasonal and interannual variability of the mineral dust cycle under present and glacial climate conditions, Journal of Geophysical Research, 2002, 107(D14): 4744, doi:10.1029/2002JD002365.

    Article  Google Scholar 

  27. Qian Zhengan, Song Minhong, Li Wanyuan, Analyses on distributive variation and forecast of sand-dust storms in recent 50 years in north China, Journal of Desert Research (in Chinese), 2002, 22(2): 106–111.

    Google Scholar 

  28. Wang Shigong, Wang Jinyan, Zhou Zijiang et al., Regional characteristics of dust events in China, Acta Geographica Sinica (in Chinese), 2003, 58(2): 193–200.

    Google Scholar 

  29. Zhou Zijiang, Zhang Guocai, Typical severe dust storms in northern China during 1954–2002, Chinese Science Bulletin, 2003, 48(21): 2366–2370.

    Article  Google Scholar 

  30. Zhang, X. Y., Gong, S. L., Zhao, T. L. et al., Sources of Asian dust and role of climate change versus desertification in Asian dust emission, Geophysical Research Letters, 2003, 30(24): 2272, doi:10.1029/2003GL018206.

    Article  Google Scholar 

  31. Yao Tandong, Jiao Keqin, Huang Cuilan et al., Environmental records in ice cores and their spatial coupling features, Quaternary Science (in Chinese), 1995, 15(1): 23–29.

    Google Scholar 

  32. Wang Ninglian, Yao Tandong, Pu Jianchen et al., Variations in air temperature during the last 100 years revealed by δ18O in the Malan ice core from the Tibetan Plateau, Chinese Science Bulletin, 2003, 48(19): 2134–2138.

    Article  Google Scholar 

  33. He Qing, Yang Qing, Li Hongjun, Variations of air temperature, precipitation and sand-dust weather in Xinjiang in past 40 years, Journal of Glaciology and Geocryology (in Chinese), 2003, 25(4): 423–427.

    Google Scholar 

  34. Zhang De’er, Anatomy of “dust rain” in history, Chinese Science Bulletin (in Chinese), 1982, 27(5): 294–297.

    Google Scholar 

  35. Yao Tandong, Yang Zhihong, Jiao Keqin et al., A study of climate and environment in the past 2000 years based on ice core, Earth Science Frontiers (in Chinese), 1997, 4(1-2): 95–100.

    Google Scholar 

  36. Thompson, L. G., Climatic change for the last 2000 years inferred from ice-core evidence in tropical ice cores, in Climatic Variations and Forcing Mechanisms of the Last 2000 Years (eds., Jones, P. D., Bradley, R. S., Jouzel, I), Berlin: Springer-Verlag, 1996, 281–295.

    Google Scholar 

  37. Shao Xuemei, Huang Lei, Liu Hongbin et al., Reconstruction of precipitation variation from tree rings in recent 1000 years in Delingha, Qinghai, Science in China, Ser. D, 2005, 48(7): 939–949.

    Article  Google Scholar 

  38. Engelstaedter, S., Kohfeld, K. E., Tegen, I. et al., Controls of dust emissions by vegetation and topographic depressions: An evaluation using dust storm frequency data, Geophysical Research Letters, 2003, 30(6): 1294, doi:10.1029/2002GL016471.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ninglian Wang.

About this article

Cite this article

Wang, N. Decrease trend of dust event frequency over the past 200 years recorded in the Malan ice core from the northern Tibetan Plateau. Chin.Sci.Bull. 50, 2866–2871 (2005). https://doi.org/10.1360/982005-237

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1360/982005-237

Keywords

Navigation