Skip to main content
Log in

Molecular phylogenetics of Gymnocypris (Teleostei: Cyprinidae) in Lake Qinghai and adjacent drainages

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

149 complete mitochondrial DNA (mtDNA) cytochrome b (Cyt b) genes (1140 bp) of Gymnocypris przewalskii, Gymnocypris eckloni and Gymnocypris scolistomus from the Lake Qinghai, Yellow River and Qaidam Basin were sequenced and analyzed. Consistent dendrogram indicated that the samples collected from the same species do not constitute a separate monophyletic group and all the samples were grouped into three highly divergent lineages (A, B and C). Among them, Lineage A contained all samples of G. przewalskii from the Lake Qinghai and partial samples of the G. eckloni from the Yellow River. Lineage B contained the remaining samples of G. eckloni from the Yellow River. Lineage C was composed of a monophyletic group by G. eckloni from the Qaidam Basin. Analysis of molecular variance (AMOVA) indicated that most of genetic variations were detected within these three mtDNA lineages (93.12%), suggesting that there are three different lineages of Gymnocypris in this region. Our Cyt b sequence data showed that G. przewalskii was not a polytypic species, and G. scolistomus was neither an independent species nor a subspecies of G. eckloni. The divergent mtDNA lineages of G. eckloni from the Yellow River suggested that gene flow between the different populations was restricted to a certain extent by several gorges on the upper reach of the Yellow River. Lineage B of G. eckloni might be the genetic effect from the ancestor which was incorporated with the endemic schizothoracine fishes when the headward erosion of the Yellow River reached to its current headwaters of late. The G. eckloni from Basin Qaidam was a monophyletic group (lineage C) and Fst values within G. eckloni from the Yellow River were higher than 0.98, suggesting that the gene flow has been interrupted for a long time and the G. eckloni from Basin Qaidam might have been evolved into different species by ecology segregation. The correlation between the rakers number of Gymnocypris and population genetic variation was not significant. All Gymnocypris populations exhibited a low nucleotide diversity (π = 0.00096–0.00485). Therefore the Gymnocypris populations from Basin Qaidam could have experienced severe bottleneck effect in history. Our result suggested Gymnocypris populations of Basin Qaidam should give a high priority in conservation programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, W. X., Chen, Y. Y., Wu, Y. F. et al., Origin and evolution of schizothoracine fishes in relation to the upheaval of the Xizang Plateau, in Collection in Studies on the Period, Amplitude and Type of the Uplift of the Qinghai-Tibetan Plateau (in Chinese) (ed. The Team of the Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau, Chinese Academy of Sciences), Beijing: Science Press, 1981, 118–130.

    Google Scholar 

  2. Kessler, K. F., Beitrage zur Ichthyologie von Central-Asien, Mèl. Biol. Bull. Acad. Sci. St. Pètersb., 1879, (10): 233–272.

  3. Zhu, S. Q., Wu, Y. F., The study on ichthyofauna of Lake Qinghai Lake, in Ichthyofauna of Lake Qinghai and Biology of Gymnoypris przewalskii (Cyprinidae) (in Chinese), Beijing: Science Press, 1975, 9–26.

    Google Scholar 

  4. Cao, W. X., Den, Z. L., Notes on the schizothoracine fishes from western Sichuan and Adjacent territory, Acta Hydrobiologica Sinica (in Chinese), 1962, (2): 27–53.

  5. Wu, Y. F., Chen, Y., The fishes in Guoluo and Yushu region of Qinghai province, Acta Zootaxonomic Sinica (in Chinese), 1979, 4(3): 287–296.

    Google Scholar 

  6. Zhao, K., Li, J. X., Zhang, Y. P. et al., Mitochondrial DNA diversity of Naked Carps (Gymnocypris przewalskii) in Qinghai Lake, Hereditas (in Chinese), 2001, 23(5): 445–448.

    Google Scholar 

  7. He, D. K., Chen, Y. F., Chen, Y. Y. et al., Molecular phylogeny of the specialized schizothoracine fishes (Teleostei: Cyprinidae), with their implications for the uplift of the Qinghai-Tibetan Plateau, Chinese Science Bulletin, 2004, 49(1): 39–48.

    Google Scholar 

  8. Ausubel, F. M., Short Protocols in Molecular Biology, New York: John Wiley and Sons, 1992.

    Google Scholar 

  9. Thompson, J. D., Higgins, D.G., Gibson, T. J., CLUSTAL W: Improving the seneitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice, Nucleic Acids Res., 1994, 22: 4673–4680.

    Article  Google Scholar 

  10. Kumar, S., Tamura, K., Nei, M., MEGA: Molecular Evolutionary Genetics Analysis, PA: Pennsylvania State University, University Park, 1993.

    Google Scholar 

  11. Swofford, D. L., PAPU: Phylogenetic Analysis Using Parsimony (*and Other Methods), Ver. 4, Massachusetts: Sinauer Associates, 1998–2002.

    Google Scholar 

  12. Posada, D., Crandall, K. A., Modeltest: Testing the model of DNA substitution, Bioinformatics, 1998, 14: 817–818.

    Article  Google Scholar 

  13. Schneider, S., Roessli, D., Excoffier, L., ARLEQUIN Version 2.000: A Software for Population Genetic Data Analysis, Switzerland: University of Geneva, 2000.

    Google Scholar 

  14. Excoffier, L., Smouse, P. E., Quattor, J. M., Analysis if molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data, Genetics, 2000, 136: 343–359.

    Google Scholar 

  15. Nei, M., Molecular Evolutionary Genetics, New York: Columbia University Press, 1987.

    Google Scholar 

  16. Cantatore, P., Roberti, M., Pesole, G. et al., Evolutionary analysis of cytochrome b sequences in some perciformes: Evidence for a slower rate of evolution than in mammals, J. Mol. Evol., 1994, 39: 589–597.

    Article  Google Scholar 

  17. Hudson, R. R., Slatkin, M., Maddison, W. P., Estimation of levels of gene flow from DNA sequence data, Genetic, 1992, 132: 583–589.

    Google Scholar 

  18. Li, J. J., Fang, X. M., Pan, B. T. et al., Late Cenozoci intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area, Quaternary Sciences (in Chinese), 2001(5): 381–391.

  19. Coelho, M. M., Brito, R. M., Pacheco, T. R. et al., Genetic variation and divergence of Leuciscus pyrenaicus and L. carolitertii (Pisces, Cyprinidae), J. Fish Biol., 1995, 47: 243–258.

    Article  Google Scholar 

  20. Kotlik, P., Berrebi, P., Genetic subdivision and biogeography of the Danubian rheophilic barb Barbus petenyi inferred from phylogenetic analysis of mitochondrial DNA variation, Mol. Phylogenet Evol., 2002, 24: 10–18.

    Article  Google Scholar 

  21. Coelho, M. M., Bogutskaya, N. G., Odrigues, J. A. et al., Leuciscus torgalensis and L. aradensis, two new cyprinids for Portuguese fresh waters, J. Fish Biol., 1998, 52: 937–950.

    Article  Google Scholar 

  22. Doadrio, I., Carmona, J. A., Fernández-Delgado, C., Morphometric study of the Iberian Aphanius (Actinopterygii, Cyprinodontiformes), with description of a new species, Folia Zool., 2002, 51: 67–79.

    Google Scholar 

  23. Kotlik, P., Tsigenopoulos, C., Ráb, P. et al., Two new Barbus species from the Danube Basin, with redescription of B. petenyi (Teleostei: Cyprinidae), Folia Zool., 2002, 51, 227–240

    Google Scholar 

  24. Zhao, T. Q., On the taxonomic problem of Gymnocypris eckloni Herzenstein (Cyprinidae), La Animala Mondo (in Chinese), 1986, 3(4): 49–55.

    Google Scholar 

  25. Herzenstein, S. M., Wissenschaftliche Resultate der von N. M., Przewalski nach Central-Asien, Zool. Theil., III, 1888–1891, 3(2): 1–262.

    Google Scholar 

  26. Zhang, C. L., Zhang, Y. L., Notes on fishes from Qinghai Lake I, Acto Zoologica Sinica (in Chinese), 1963, 15(2): 291–295.

    Google Scholar 

  27. Zhang, C. L., Zhang, Y. L., Notes on fishes from Qinghai Lake II, Acto Zoologica Sinica (in Chinese), 1963, 15(2): 635–638.

    Google Scholar 

  28. Chen, Z. M., Apreliminary analysis of paleo-limnology and its environment at the upper reaches of the Huanghe river, in Proceedings of the Third Chinese Oceanological and Limnological Science Conference (in Chinese), Beijing: Science Press, 1988, 244–253.

    Google Scholar 

  29. Wu, Y. F., Wu, C. Z., The Fishes of the Qingha-Xizang Plateau (in Chinese), Sichuan: Sichuan Science and Technology Press, 1991, 435–446.

    Google Scholar 

  30. Zhang, Z. Y., Yu, Q. W., Zhang, K. X. et al., Geomorphological evolution of Quaternary River from upper Yellow River and geomorphological evolution investigation for 1:250000 scale geological mapping in Qinghai-Tibet plateau, Earth Science-Journal of China University of Geosciences (in Chinese), 2003, 28(6): 621–633.

    Google Scholar 

  31. Wang, J. L., The research on feed of Gymnocypris przewalskii, in Ichthyofauna of Qinghai Lake Area and Biology of Gymnocypris przewalskii Herzenstein (Cyprinidae) (in Chinese), Beijing: Science Press, 1975, 27–36.

    Google Scholar 

  32. Yang, J. X., Phylogeny and zoogeography of the Cyprinid genus Epalzeorhynchos Bleeker (Cyprinidae: Ostariophysi), Copeia, 1998, 1: 48–63.

    Article  Google Scholar 

  33. Zhang, E., Phylogenetic relationships of the endemic Chinese cyprinid fish Pseudogyrinocheilu prochilus (in Chinese), Zoological Research, 1994, 15(additional): 26–35.

    Google Scholar 

  34. Li, J. B., Wang, X. Z., He, S. P. et al., Phylogenetic Studies of Chinese labeonine fishes (Teleostei: Cyprinidae) based on the mitochondrial 16S rRNA gene, Progress in Natural Science (in Chinese), 15(3): 45–51.

  35. Alves, M. J., Coelho, H., Collares-Pereira, M. J. et al., Mitochondrial DNA variation in the highly endangered cyprinid fish Anaecypris hispanica: Importance for conservation, Heredity, 2001, 87: 463–473.

    Article  Google Scholar 

  36. Mesquita, N., Carvalho, G., Shaw, P. et al., River basin-related genetic structuring in an endangered fish species, Chondrostoma lusitanicum, based on mtDNA sequencing and RFLP analysis, Heredity, 2002, 86, 253–264.

    Article  Google Scholar 

  37. Perdices, A., Cunha, C., Coelho, M. M., Phylogenetic structure of Zacco platypus (Teleostei: Cyprinidae) populations on the upper and middle Chang Jiang (=Yangtze) drainage inferred from cytochrome b sequences, Mol. Phyliogenet. Evol., 2004, 31: 192–203.

    Article  Google Scholar 

  38. Grewe, P. M., Mitochondrial DNA variation among Lake trout (Salvelinus namaycush) strains stocked into Lake Ontario, Can. J. Fish. Aquat. Sci., 1993, 50: 2397–2403.

    Article  Google Scholar 

  39. Jing, M. C., Sun, Z. C., Li, D. M. et al., Ilyocypris inermis extinction event and it’s spalaeo-environment significance in the Qaidam Basin at about 30 ka. B. P., Geoscience-Journal of Graduate School (in Chinese), 2001, 15 (1): 49–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunping He.

About this article

Cite this article

Zhao, K., Li, J., Yang, G. et al. Molecular phylogenetics of Gymnocypris (Teleostei: Cyprinidae) in Lake Qinghai and adjacent drainages. Chin.Sci.Bull. 50, 1326–1334 (2005). https://doi.org/10.1360/982005-223

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1360/982005-223

Keywords

Navigation