Chinese Science Bulletin

, Volume 50, Issue 13, pp 1326–1334 | Cite as

Molecular phylogenetics of Gymnocypris (Teleostei: Cyprinidae) in Lake Qinghai and adjacent drainages

  • Kai Zhao
  • Junbing Li
  • Gongshe Yang
  • Ziyuan Duan
  • Shunping He
  • Yiyu Chen
Articles
  • 50 Downloads

Abstract

149 complete mitochondrial DNA (mtDNA) cytochrome b (Cyt b) genes (1140 bp) of Gymnocypris przewalskii, Gymnocypris eckloni and Gymnocypris scolistomus from the Lake Qinghai, Yellow River and Qaidam Basin were sequenced and analyzed. Consistent dendrogram indicated that the samples collected from the same species do not constitute a separate monophyletic group and all the samples were grouped into three highly divergent lineages (A, B and C). Among them, Lineage A contained all samples of G. przewalskii from the Lake Qinghai and partial samples of the G. eckloni from the Yellow River. Lineage B contained the remaining samples of G. eckloni from the Yellow River. Lineage C was composed of a monophyletic group by G. eckloni from the Qaidam Basin. Analysis of molecular variance (AMOVA) indicated that most of genetic variations were detected within these three mtDNA lineages (93.12%), suggesting that there are three different lineages of Gymnocypris in this region. Our Cyt b sequence data showed that G. przewalskii was not a polytypic species, and G. scolistomus was neither an independent species nor a subspecies of G. eckloni. The divergent mtDNA lineages of G. eckloni from the Yellow River suggested that gene flow between the different populations was restricted to a certain extent by several gorges on the upper reach of the Yellow River. Lineage B of G. eckloni might be the genetic effect from the ancestor which was incorporated with the endemic schizothoracine fishes when the headward erosion of the Yellow River reached to its current headwaters of late. The G. eckloni from Basin Qaidam was a monophyletic group (lineage C) and Fst values within G. eckloni from the Yellow River were higher than 0.98, suggesting that the gene flow has been interrupted for a long time and the G. eckloni from Basin Qaidam might have been evolved into different species by ecology segregation. The correlation between the rakers number of Gymnocypris and population genetic variation was not significant. All Gymnocypris populations exhibited a low nucleotide diversity (π = 0.00096–0.00485). Therefore the Gymnocypris populations from Basin Qaidam could have experienced severe bottleneck effect in history. Our result suggested Gymnocypris populations of Basin Qaidam should give a high priority in conservation programs.

Keywords

Gymnocypris przewalskii Gymnocypris eckloni Gymnocypris scoliostomus cytochrome b (Cyt bCyprinidae Schizothoracinae molecular phylogeny 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cao, W. X., Chen, Y. Y., Wu, Y. F. et al., Origin and evolution of schizothoracine fishes in relation to the upheaval of the Xizang Plateau, in Collection in Studies on the Period, Amplitude and Type of the Uplift of the Qinghai-Tibetan Plateau (in Chinese) (ed. The Team of the Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau, Chinese Academy of Sciences), Beijing: Science Press, 1981, 118–130.Google Scholar
  2. 2.
    Kessler, K. F., Beitrage zur Ichthyologie von Central-Asien, Mèl. Biol. Bull. Acad. Sci. St. Pètersb., 1879, (10): 233–272.Google Scholar
  3. 3.
    Zhu, S. Q., Wu, Y. F., The study on ichthyofauna of Lake Qinghai Lake, in Ichthyofauna of Lake Qinghai and Biology of Gymnoypris przewalskii (Cyprinidae) (in Chinese), Beijing: Science Press, 1975, 9–26.Google Scholar
  4. 4.
    Cao, W. X., Den, Z. L., Notes on the schizothoracine fishes from western Sichuan and Adjacent territory, Acta Hydrobiologica Sinica (in Chinese), 1962, (2): 27–53.Google Scholar
  5. 5.
    Wu, Y. F., Chen, Y., The fishes in Guoluo and Yushu region of Qinghai province, Acta Zootaxonomic Sinica (in Chinese), 1979, 4(3): 287–296.Google Scholar
  6. 6.
    Zhao, K., Li, J. X., Zhang, Y. P. et al., Mitochondrial DNA diversity of Naked Carps (Gymnocypris przewalskii) in Qinghai Lake, Hereditas (in Chinese), 2001, 23(5): 445–448.Google Scholar
  7. 7.
    He, D. K., Chen, Y. F., Chen, Y. Y. et al., Molecular phylogeny of the specialized schizothoracine fishes (Teleostei: Cyprinidae), with their implications for the uplift of the Qinghai-Tibetan Plateau, Chinese Science Bulletin, 2004, 49(1): 39–48.Google Scholar
  8. 8.
    Ausubel, F. M., Short Protocols in Molecular Biology, New York: John Wiley and Sons, 1992.Google Scholar
  9. 9.
    Thompson, J. D., Higgins, D.G., Gibson, T. J., CLUSTAL W: Improving the seneitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice, Nucleic Acids Res., 1994, 22: 4673–4680.CrossRefGoogle Scholar
  10. 10.
    Kumar, S., Tamura, K., Nei, M., MEGA: Molecular Evolutionary Genetics Analysis, PA: Pennsylvania State University, University Park, 1993.Google Scholar
  11. 11.
    Swofford, D. L., PAPU: Phylogenetic Analysis Using Parsimony (*and Other Methods), Ver. 4, Massachusetts: Sinauer Associates, 1998–2002.Google Scholar
  12. 12.
    Posada, D., Crandall, K. A., Modeltest: Testing the model of DNA substitution, Bioinformatics, 1998, 14: 817–818.CrossRefGoogle Scholar
  13. 13.
    Schneider, S., Roessli, D., Excoffier, L., ARLEQUIN Version 2.000: A Software for Population Genetic Data Analysis, Switzerland: University of Geneva, 2000.Google Scholar
  14. 14.
    Excoffier, L., Smouse, P. E., Quattor, J. M., Analysis if molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data, Genetics, 2000, 136: 343–359.Google Scholar
  15. 15.
    Nei, M., Molecular Evolutionary Genetics, New York: Columbia University Press, 1987.Google Scholar
  16. 16.
    Cantatore, P., Roberti, M., Pesole, G. et al., Evolutionary analysis of cytochrome b sequences in some perciformes: Evidence for a slower rate of evolution than in mammals, J. Mol. Evol., 1994, 39: 589–597.CrossRefGoogle Scholar
  17. 17.
    Hudson, R. R., Slatkin, M., Maddison, W. P., Estimation of levels of gene flow from DNA sequence data, Genetic, 1992, 132: 583–589.Google Scholar
  18. 18.
    Li, J. J., Fang, X. M., Pan, B. T. et al., Late Cenozoci intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area, Quaternary Sciences (in Chinese), 2001(5): 381–391.Google Scholar
  19. 19.
    Coelho, M. M., Brito, R. M., Pacheco, T. R. et al., Genetic variation and divergence of Leuciscus pyrenaicus and L. carolitertii (Pisces, Cyprinidae), J. Fish Biol., 1995, 47: 243–258.CrossRefGoogle Scholar
  20. 20.
    Kotlik, P., Berrebi, P., Genetic subdivision and biogeography of the Danubian rheophilic barb Barbus petenyi inferred from phylogenetic analysis of mitochondrial DNA variation, Mol. Phylogenet Evol., 2002, 24: 10–18.CrossRefGoogle Scholar
  21. 21.
    Coelho, M. M., Bogutskaya, N. G., Odrigues, J. A. et al., Leuciscus torgalensis and L. aradensis, two new cyprinids for Portuguese fresh waters, J. Fish Biol., 1998, 52: 937–950.CrossRefGoogle Scholar
  22. 22.
    Doadrio, I., Carmona, J. A., Fernández-Delgado, C., Morphometric study of the Iberian Aphanius (Actinopterygii, Cyprinodontiformes), with description of a new species, Folia Zool., 2002, 51: 67–79.Google Scholar
  23. 23.
    Kotlik, P., Tsigenopoulos, C., Ráb, P. et al., Two new Barbus species from the Danube Basin, with redescription of B. petenyi (Teleostei: Cyprinidae), Folia Zool., 2002, 51, 227–240Google Scholar
  24. 24.
    Zhao, T. Q., On the taxonomic problem of Gymnocypris eckloni Herzenstein (Cyprinidae), La Animala Mondo (in Chinese), 1986, 3(4): 49–55.Google Scholar
  25. 25.
    Herzenstein, S. M., Wissenschaftliche Resultate der von N. M., Przewalski nach Central-Asien, Zool. Theil., III, 1888–1891, 3(2): 1–262.Google Scholar
  26. 26.
    Zhang, C. L., Zhang, Y. L., Notes on fishes from Qinghai Lake I, Acto Zoologica Sinica (in Chinese), 1963, 15(2): 291–295.Google Scholar
  27. 27.
    Zhang, C. L., Zhang, Y. L., Notes on fishes from Qinghai Lake II, Acto Zoologica Sinica (in Chinese), 1963, 15(2): 635–638.Google Scholar
  28. 28.
    Chen, Z. M., Apreliminary analysis of paleo-limnology and its environment at the upper reaches of the Huanghe river, in Proceedings of the Third Chinese Oceanological and Limnological Science Conference (in Chinese), Beijing: Science Press, 1988, 244–253.Google Scholar
  29. 29.
    Wu, Y. F., Wu, C. Z., The Fishes of the Qingha-Xizang Plateau (in Chinese), Sichuan: Sichuan Science and Technology Press, 1991, 435–446.Google Scholar
  30. 30.
    Zhang, Z. Y., Yu, Q. W., Zhang, K. X. et al., Geomorphological evolution of Quaternary River from upper Yellow River and geomorphological evolution investigation for 1:250000 scale geological mapping in Qinghai-Tibet plateau, Earth Science-Journal of China University of Geosciences (in Chinese), 2003, 28(6): 621–633.Google Scholar
  31. 31.
    Wang, J. L., The research on feed of Gymnocypris przewalskii, in Ichthyofauna of Qinghai Lake Area and Biology of Gymnocypris przewalskii Herzenstein (Cyprinidae) (in Chinese), Beijing: Science Press, 1975, 27–36.Google Scholar
  32. 32.
    Yang, J. X., Phylogeny and zoogeography of the Cyprinid genus Epalzeorhynchos Bleeker (Cyprinidae: Ostariophysi), Copeia, 1998, 1: 48–63.CrossRefGoogle Scholar
  33. 33.
    Zhang, E., Phylogenetic relationships of the endemic Chinese cyprinid fish Pseudogyrinocheilu prochilus (in Chinese), Zoological Research, 1994, 15(additional): 26–35.Google Scholar
  34. 34.
    Li, J. B., Wang, X. Z., He, S. P. et al., Phylogenetic Studies of Chinese labeonine fishes (Teleostei: Cyprinidae) based on the mitochondrial 16S rRNA gene, Progress in Natural Science (in Chinese), 15(3): 45–51.Google Scholar
  35. 35.
    Alves, M. J., Coelho, H., Collares-Pereira, M. J. et al., Mitochondrial DNA variation in the highly endangered cyprinid fish Anaecypris hispanica: Importance for conservation, Heredity, 2001, 87: 463–473.CrossRefGoogle Scholar
  36. 36.
    Mesquita, N., Carvalho, G., Shaw, P. et al., River basin-related genetic structuring in an endangered fish species, Chondrostoma lusitanicum, based on mtDNA sequencing and RFLP analysis, Heredity, 2002, 86, 253–264.CrossRefGoogle Scholar
  37. 37.
    Perdices, A., Cunha, C., Coelho, M. M., Phylogenetic structure of Zacco platypus (Teleostei: Cyprinidae) populations on the upper and middle Chang Jiang (=Yangtze) drainage inferred from cytochrome b sequences, Mol. Phyliogenet. Evol., 2004, 31: 192–203.CrossRefGoogle Scholar
  38. 38.
    Grewe, P. M., Mitochondrial DNA variation among Lake trout (Salvelinus namaycush) strains stocked into Lake Ontario, Can. J. Fish. Aquat. Sci., 1993, 50: 2397–2403.CrossRefGoogle Scholar
  39. 39.
    Jing, M. C., Sun, Z. C., Li, D. M. et al., Ilyocypris inermis extinction event and it’s spalaeo-environment significance in the Qaidam Basin at about 30 ka. B. P., Geoscience-Journal of Graduate School (in Chinese), 2001, 15 (1): 49–57.Google Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  • Kai Zhao
    • 1
    • 2
    • 4
  • Junbing Li
    • 1
  • Gongshe Yang
    • 2
  • Ziyuan Duan
    • 3
  • Shunping He
    • 1
  • Yiyu Chen
    • 1
  1. 1.Institute of HydrobiologyChinese Academy of SciencesWuhanChina
  2. 2.Laboratory of Animal Fat Deposition and Muscle DevelopmentNorthwest Sci-tech University of Agriculture and ForestryYanglingChina
  3. 3.Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
  4. 4.Agriculture and Animal Husbandry CollegeQinghai UniversityXiningChina

Personalised recommendations