Chinese Science Bulletin

, Volume 50, Issue 10, pp 1044–1047 | Cite as

Synthesis of highly ordered SnO2/Fe2O3 composite nanowire arrays by electrophoretic deposition method

  • Li Jianjun
  • Zhang Xingtang
  • Chen Yanhui
  • Li Yuncai
  • Huang Yabin
  • Du Zuliang
  • Li Tiejin


Highly ordered SnO2/Fe2O3 composite nanowire arrays have been synthesized by electrophoretic deposition method. The morphology and chemical composition of SnO2/Fe2O3 composite nanowire arrays are characterized by SEM, TEM, EDX, XPS, and XRD. The results show that the SnO2/Fe2O3 composite nanowires are about 180 nm in width and tens of microns in length, and they are composed of small nanoparticles of tetragonal SnO2 and rhombohedral a-Fe2O3 with diameters of 10–15 nm. The SnO2/Fe2O3 composite nanowires are formed by a series of chemical reactions.


SnO2/Fe2O3 composite nanowire arrays electrophoretic deposition AAO template sol particles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Misewich, J. A., Martel, R., Avouris, P. et al., Electrically induced optical emission from a carbon nanotube FET, Science, 2003, 300: 783–786.PubMedCrossRefGoogle Scholar
  2. 2.
    Bezryadin, A., Lau, C. N., Tinkham, M., Quantum suppression of superconductivity in ultrathin nanowires, Nature, 2000, 404: 971–974.PubMedCrossRefGoogle Scholar
  3. 3.
    Collins, P. G., Arnold, M. S., Avouris, P, Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science, 2001, 292: 706–709.PubMedCrossRefGoogle Scholar
  4. 4.
    Collins, P. G., Bradley, K., Ishigami, M. et al., Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science, 2000, 287: 1801–1804.PubMedCrossRefGoogle Scholar
  5. 5.
    Patzke, G. R., Krumeich, F., Nesper, R., Oxidic nanotubes and nanorods-anisotropic modules for a future nanotechnology, Angew. Chem. Int. Ed., 2002, 41: 2446–2461.CrossRefGoogle Scholar
  6. 6.
    Murphy, C. J., Jana, N. R., Controlling the aspect ratio of inorganic nanorods and nanowires, Adv. Mater., 2002, 14: 80–82.CrossRefGoogle Scholar
  7. 7.
    Dai, L., Patil, A., Gong, X., Aligned Nanotubes. ChemPhys. Chem., 2003, 4: 1150–1169.Google Scholar
  8. 8.
    Xia, Y., Yang, P., Sun, Y. et al., One-dementional nanostuctures: synthesis, characterization, and applications, Adv. Mater., 2003, 15: 353–398.CrossRefGoogle Scholar
  9. 9.
    Brinda, B., Lakshmi, Peter, K. et al., Sol-Gel template synthesis of semiconductor nanostructures, Chem. Mater. 1997, 9: 857–862.CrossRefGoogle Scholar
  10. 10.
    Lei, Y., Zhang, L. D., Meng, G. W. et al., Preparation and photoluminescence of highly ordered TiO2 nano wire arrays, Appl. Phys. Lett., 2001, 78: 1125–1127.CrossRefGoogle Scholar
  11. 11.
    Zhou, Y. K., Huang, J., Li, H. L., Synthesis of highly ordered LiMnO2 nanowire arrays (by AAO template) and their structural properties, Appl. Phys. A, 2003, 76: 53–57.CrossRefGoogle Scholar
  12. 12.
    Limmer, S. J., Cao, G., Sol-Gol electrophoretic deposition for the growth of oxide nanorode, Adv. Mater., 2003, 15: 427–431.CrossRefGoogle Scholar
  13. 13.
    Limmer, S. J., Cao, G., Electrophoretic growth of lead zirconate titanate nanorods, Adv. Mater., 2001, 13: 1269–1272.CrossRefGoogle Scholar
  14. 14.
    Gratzel, M., Photoelectrochemical cells, Nature, 2001, 414: 338–344.PubMedCrossRefGoogle Scholar
  15. 15.
    Subramanian, V., Wolf, E., Kamat, P. V., Semiconductor-metal composite nanostructures, To what extent do metal nanoparticles improve the photocatalytic zctivity of TiO2 films? J. Phys. Chem. B, 2001, 105: 11439–11446.CrossRefGoogle Scholar
  16. 16.
    Wu, J. J., Wong, T. C., Yu, C. C., Growth and characterization of well-aligned nc-Si/SiCv composite nanowires, Adv. Mater., 2002, 14: 1643–1646.CrossRefGoogle Scholar
  17. 17.
    Tan, O. K., Cao, W., Zhu, W. et al., Ethanol sensors based on nano-sized a-Fe2O3 with SnO2, ZrO2, TiO2 solid solutions, Sensors and Actuators B, 2003, 93: 396–401.CrossRefGoogle Scholar
  18. 18.
    Kolmakov, A., Zhang, Y., Cheng, G. et al., Detection of CO and O2 using tin oxide nanowire sensors, Adv. Mater., 2003, 15: 997–1000.CrossRefGoogle Scholar
  19. 19.
    Li, M., Martin, C. R., Scrosati, B., Nanomaterial-based Li-ion battery electrodes, Journal of Power Sources, 2001, 97-98: 240–243.CrossRefGoogle Scholar
  20. 20.
    Vayssieres, L., Beermann, N., Lindquist, S. E. et al., Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: application to iron (III) oxides, Chem. Mater., 2001, 13:233–235.CrossRefGoogle Scholar
  21. 21.
    Jiao, Z., Wang, S. Y., Bian, L. F. et al., Materials stability of SnO2/Fe2O3 multilayer thin film gas sensor, Research Bulletin, 2000, 35(5): 741–745.CrossRefGoogle Scholar
  22. 22.
    Reddy, C. V. G., Cao, W., Tan, O. K. et al., Preparation of Fe2O3(0.9)-SnO2(0.1) by hydrazine method: application as an alcohol sensor, Sensors and Actuators B, 2002, 81: 170–175.CrossRefGoogle Scholar
  23. 23.
    Matsumuraa, T., Sonoyamaa, N., Kannoa, R. et al., Lithiation mechanism of new electrode material for lithium ion cells—the a-Fe2O3-SnO2 binary system, Solid State Ionics, 2003, 158: 253–260.CrossRefGoogle Scholar
  24. 24.
    Liang, Z., Zheng, S., Guo, S., Gas-sensing transmissive optical character of Fe2O3:SnO2 thin film, Laser Journal, 1997, 18(3): 23–27.Google Scholar
  25. 25.
    Xiao, Z. L., Catherine, Y., Fabrication of alumina nanotubes and nanowires by etching porous alumina membranes, Nano Lett., 2002, 2: 1293–1297.CrossRefGoogle Scholar
  26. 26.
    Cong, Q., Two dimensional X-ray diffraction of polycrystalline (in Chinese), Beijing: Science Press, 1997: 220–232.Google Scholar
  27. 27.
    Yang, H., Lu, W., Applied Electrochemistry (in Chinese), Beijing: Science Press, 2001: 10–17.Google Scholar
  28. 28.
    Limmer, S. J., Chou, T. P., Cao, G. Z., A study on the growth of TiO2 nanorods using sol electrophoresis, Journal of Material Science, 2004, 39: 895–901.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  • Li Jianjun
    • 1
  • Zhang Xingtang
    • 1
  • Chen Yanhui
    • 1
  • Li Yuncai
    • 1
  • Huang Yabin
    • 1
  • Du Zuliang
    • 1
  • Li Tiejin
    • 1
    • 2
  1. 1.Key Lab for Special Functional MaterialsHenan UniversityKaifengChina
  2. 2.Lab of PhotochemistryJilin UniversityChangchunChina

Personalised recommendations