Chinese Science Bulletin

, Volume 50, Issue 17, pp 1940–1948 | Cite as

A numerical study on nonlinear propagation and short-term variability of the migrating diurnal and semidiurnal tides



By using a three-dimensional fully nonlinear numerical model in spherical coordinates and taking the linear steady solutions of the migrating diurnal and semidiurnal tides in January from the Global-Scale Wave Model (GSWM) as the initial values, we simulate the linear and nonlinear propagations of the migrating diurnal and semidiurnal tides in the atmosphere from the ground to the lower thermosphere. A comparison of our simulations with the results of GSWM is also presented. The simulation results show that affected by the nonlinearity, the migrating diurnal and semidiurnal tides propagating in the middle and upper atmosphere exhibit evident short-term variability. The nonlinear interactions between the migrating tides and the background atmosphere can obviously alter the background wind and temperature fields, which suggests that the nonlinear propagations of the migrating diurnal and semidiurnal tides impact significantly on the transient dynamical and thermal structures of the background middle and upper atmosphere and the nonlinear effect is an important cause of the difference between the results of GSWM and observations.


migrating diurnal tide migrating semidiurnal tide nonlinear effect middle and upper atmosphere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chapman, S., Lindzen, R. S., Atmospheric Tides, Dordrecht, Hol- land: D. Reidel, 1970.Google Scholar
  2. 2.
    Hagan, M. E., Forbes, J. M., Vial, F., A numerical investigation of the propagation of the quasi 2-day wave into the lower thermo- sphere, J. Geophys. Res., 1993, 98: 23193–23205.CrossRefGoogle Scholar
  3. 3.
    Hagan, M. E., Burrage, M. D., Forbes, J. M. et al., GSWM-98: Results for migrating solar tides, J. Geophys. Res., 1999, 104: 6813–6827.CrossRefGoogle Scholar
  4. 4.
    Hagan, M. E., Forbes, J. M., Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 2002, 107, 4754, doi: 10.1029/2001JD001236.CrossRefGoogle Scholar
  5. 5.
    Yi, F., Short-term variability and temporary structures of tides and mean wind in the polar summer mesosphere, J. Atmos. Sol-Terr. Phys., 2001, 63:749–757.CrossRefGoogle Scholar
  6. 6.
    Grieger, N., Volodin, E. M., Schmitz, G. et al., General circulation model results on migrating and nonmigrating tides in the meso- sphere and lower thermosphere, Part I: comparison with observa- tions, J. Atmos. Sol-Terr. Phys., 2002, 64: 897–911.CrossRefGoogle Scholar
  7. 7.
    Huang, C. M., Yi, F., Zhang, S. D., A spectral numerical solution of Navier-Stokes equations in a 3-dimension spherical coordinate system, Chin. J. Space Sci., 2005, 25(1): 37–43.Google Scholar
  8. 8.
    Forbes, J. M., Atmospheric tides, 1. Model description and results for the solar diurnal component, J. Geophys. Res., 1982, 87: 5222–5240.CrossRefGoogle Scholar
  9. 9.
    Zhang, S. D., Yi, F., Hu, X., MF radar observation of mean wind and tides of winter mesopause (80–98 km) region over Wuhan (30°N, 114°E), J. Atmos. Sol-Terr. Phys., 2004, 66(1): 15–25.CrossRefGoogle Scholar
  10. 10.
    Siskind, D. E., Eckermann, S. D., McCormack, J. P., Hemispheric differences in the temperature of the summertime stratosphere and mesosphere, J. Geophys. Res., 2003, 108: ACL10–1–10–13.CrossRefGoogle Scholar
  11. 11.
    Zhang, S. D., Yi, F., Anumerical study on global propagations and amplitude growths of large scale gravity wave packets, J. Geophys. Res., 2004, 109, D07106, Doi: 10.1029/2003JD004429.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  1. 1.School of Electronic InformationWuhan UniversiyWuhanChina
  2. 2.Key Laboratory of Geospace Environment and GeodesyMinistry of Education, Wuhan UniversityWuhanChina

Personalised recommendations