Skip to main content
Log in

Synthesis of carbon nanotube arrays using ethanol in porous anodic aluminum oxide template

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

Carbon nanotube (CNT) arrays confined by porous anodic aluminum oxide (AAO) template were synthesized using ethanol as reactant carbon source at low pressure. Images by scanning electron microscope (SEM) and low magnification transmission electron microscopy (TEM) show that these CNTs have highly uniform outer diameter and length, absolutely controlled by the diameter and depth of nano-channel arrays of the AAO. High resolution transmission electron microscopy (HRTEM) imaging indicates that the graphitization of the CNT walls is better than the results reported on this kind of template-based CNT arrays, although it is not so good as that of multiwalled carbon nanotubes (MWCNTs) synthesized by catalysis. CNTs synthesized using acetylene as reactant gas show much less graphitization than those prepared using ethanol by comparing the results of HRTEM and Raman spectroscopy. The etching effects of decomposed OH radicals on the amorphous carbon and the roughness of AAO nano-channel arrays on the CNTs growth were employed to explain the graphitization and growth of the CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S., Helical microtubles of graphitic carbon, Nature, 1991, 354(6348): 56–58.

    Article  CAS  Google Scholar 

  2. Wang, Q. H., Corrigan, T. D., Dai, J. Y. et al., Field emission from nanotube bundle emitters at low fields, Applied Physics Letter, 1997, 70(24): 3308–3310.

    Article  CAS  Google Scholar 

  3. Collins, P. G., Zettl, A., Unique characteristic of cold cathode carbon-nanotube-matrix field emitters, Physical Review B, 1997, 55(15): 9391–9399.

    Article  CAS  Google Scholar 

  4. Kornelius, N., Jinsub, C., Kathrin, S. et al., Self-ordering regimes of porous alumina: the 10% porosity rule, Nano Letters, 2002, 2(7): 677–680.

    Article  Google Scholar 

  5. Takashi, K., Li, T., Akira, T. et al., Formation of ultrafine carbon tubes by using an anodic alumina oxide film as a template, Chemistry of Materials, 1995, 7(8): 1427–1428.

    Article  Google Scholar 

  6. Takashi, K., Li, T., Akira, T. et al., Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film, Chemistry of Materials, 1996, 8(8): 2109–2113.

    Article  Google Scholar 

  7. Yuan, Z. H., Huang, H., Liu, L. et al., Controlled growth of carbon nanotubes in diameter and shape using template-synthesis method, Chemical Physics Letters, 2001, 345(1–2): 39–43.

    Article  CAS  Google Scholar 

  8. Lee, J. S., Gu, G. H., Kim, H.et al., Growth of carbon nanotubes on anodic aluminum oxide templates: Fabrication of a Tube-inTube and Linearly Joined Tube, Chemistry of Materials, 2001, 13(7): 2387–2391.

    Article  CAS  Google Scholar 

  9. Mun, J. K., Jong, H., Jong, B. P. et al., Growth characteristics of carbon nanotubes via aluminum nanopore template on Si substrate using PECVD, Thin Solid Films, 2003, 435(1–2): 312–317.

    Google Scholar 

  10. Tsai, S. H., Chiang, F. K., Tsai, T. G. et al., Synthesis and characterization of the aligned hydrogenated amorphous carbon nanotubes by electron cyclotron resonance excitation, Thin Solid Films, 2000, 366(11): 11–15.

    Article  CAS  Google Scholar 

  11. Yang, Y., Hu, Z., Wu, Q. et al., Template-confined growth and structural characterization of amorphous carbon nanotubes, Chemical Physical Letters, 2003, 373(5–6): 580–585.

    Article  CAS  Google Scholar 

  12. Sui, Y. C., Cui, B. Z., Guardian, R. et al., Growth of carbon nanotubes and nanofibres in porous anodic alumina film, Carbon, 2002, 40(7): 1011–1016.

    Article  CAS  Google Scholar 

  13. Lee, J. S., Gu, G. H., Kim, H. et al., Well-ordered Co nanowire arrays for aligned carbon nanotube arrays, Synthetic metals, 2001, 124(2–3): 307–310.

    Article  CAS  Google Scholar 

  14. Davydov, D. N., Sattari, P. A., Almawlawi, D. et al., Field emitters based on porous aluminum oxide templates, Journal of Applied Physics, 1999, 86(46): 3983–3987.

    Article  CAS  Google Scholar 

  15. Wan, Y. J., Kulkarni, N. N., Shih, C. K. et al., Electric characterization of individual carbon nanotuebs grown in nanoporous anodic alumina templates, Applied Physics Letters, 2004, 84(7): 1177–1179.

    Article  Google Scholar 

  16. Tatsuya, I., Taiko, M., Tohru, D., Multiwalled carbon nanotubes growth in anodic alumina nanoholes, Applied Physics Letters, 1999, 75(14): 2044–2046.

    Article  Google Scholar 

  17. Jeong, S. H., Hwang, H. Y., Hwang, S. K. et al., Carbon nanotubes based on anodic aluminum oxide nano-template, Carbon, 2004, 42(10): 2073–2080.

    Article  CAS  Google Scholar 

  18. Gao, H., Mu, C., Wang, F. et al., Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template, Journal of Applied Physics, 2003, 93(9): 5602–5605.

    Article  CAS  Google Scholar 

  19. Calderon-Moreno, J. M., Yoshimura, M., Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon, Journal of the American Chemical Society, 2001, 123(4): 741 -742.

    Article  PubMed  CAS  Google Scholar 

  20. Kang, Z. H., Wang, E. B., Gao, L. et al., One-step water-assisted synthesis of high-quality carbon nanotubes directly from graphite, Journal of the American Chemical Society, 2003, 125(45): 13652–13653.

    Article  PubMed  CAS  Google Scholar 

  21. Maruyama, S., Kojima, R., Miyauchi, Y. et al., Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chemical Physics Letters, 2002, 360(3–4): 229–334.

    Article  CAS  Google Scholar 

  22. Fan, S., Chapline, M. G., Franklin, N. R. et al., Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science, 1999, 283(5401): 512–514.

    Article  PubMed  CAS  Google Scholar 

  23. Li, Y. M., Kim, W., Zhang, Y. G.et al, Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes, Journal of Physical Chemistry B, 2001, 105(46): 11424–11431.

    Article  CAS  Google Scholar 

  24. Im, W. S., Cho, Y. S., Choi, G. S. et al., Stepped carbon nanotubes synthesized in anodic aluminum oxide templates, Diamond and Related Materials, 2004, 13(4–8): 1214–1217.

    Article  CAS  Google Scholar 

  25. Yao, B. D., Wang, N., Carbon nanotube arrays prepared by MWCVD, Journal of Physical Chemistry B, 2001, 105(46): 11395–11398.

    Article  CAS  Google Scholar 

  26. Sui, Y. C., Acosta, D. R., Gonzalez-Leon, J. A. et al., Structure, thermal stability, and deformation of multibranched carbon nanotubes synthesized by CVD in the AAO template, Journal of Physical Chemistry B, 2001, 105(8): 1523–1527.

    Article  CAS  Google Scholar 

  27. Sui, Y. C., Cui, B. Z., Martinez L. et al., Pore structure, barrier layer topography and matrix alumina structure of porous anodic alumina film, Thin Solid Films, 2001, 406(1–2): 64–69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Gong.

About this article

Cite this article

Yu, G., Wang, S., Gong, J. et al. Synthesis of carbon nanotube arrays using ethanol in porous anodic aluminum oxide template. Chin.Sci.Bull. 50, 1097–1100 (2005). https://doi.org/10.1360/982004-68

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1360/982004-68

Keywords

Navigation