Skip to main content
Log in

Tectonic implication of stockwork microbreccias

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

The stockwork microbreccia found in the Dabie and Helan Mountains bears no relation to either meteorite impact and cryptoexplosion, or fault displacement. It is controlled by tensional or transtensional fracture network in relatively hard felsic crystalline rocks, appearing as breccia with dark cryptocrystalline matrix. The kilometer-scale distribution and complicated relation to fracture system of the stockwork microbreccias, randomly distributed autochthonous fragments of host rock, ultracataclasis without notable displacement in the cryptocrystalline matrix, and a probable solid-state amorphization deformation mechanism all suggest that large-scale, high-energy and rapid brittle fracturing event might have occurred in the rocks at relatively deep crustal level in the areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reimold, W. U., Miller, R. McG., Exogenic and endogenic breccias: a discussion of major problematics, Earth-Sci. Rev., 1998, 43: 25–47.

    Article  Google Scholar 

  2. Dressler, B. O., Reimold, W. U., Terrestrial impact melt rocks and glasses, Earth-Sci. Rev., 2001, 56: 205–284.

    Article  Google Scholar 

  3. Goltrant, O., Leroux, H., Doukhan, J. et al., Formation mechanisms of planar deformation features in naturally shocked quarts, Phys. Earth Planet. Inter., 1992, 74: 219–240.

    Article  Google Scholar 

  4. Jankowski, A. F., Sandoval, P., Hayes, J. P., Superlattice effects on solid-state amorphization, NanoStructured Materials, 1995, 5(5): 497–503.

    Article  Google Scholar 

  5. Melosh, H. J., Impact Cratering—A Geologic Process, New York: Oxford University Press, 1989, 245.

    Google Scholar 

  6. Stoffler, D., Langenhorst, F., Shock metamorphism of quartz in nature and experiment, I. Basic observation and theory, Meteoritics, 1994, 29: 155–181.

    Google Scholar 

  7. Duff, P. McL., D., Holmes’ Principles of Physical Geology, 4th ed., London: Chapman and Hall, 1993, 791.

    Google Scholar 

  8. Schwarzman, E. C., Meyer, C. E., Wilshire, H. G., Pseudotachylyte from the Vredefort Ring, South Africa, and the origin of some lunar breccias, Bull. Geol. Soc. Am., 1983, 94: 926–935.

    Article  Google Scholar 

  9. Spray, J. G., Pseudotachylyte controversy: Fact or Friction? Geology, 1995, 23: 1119–1122.

    Article  Google Scholar 

  10. Kenkmann, T., Dike formation, cataclastic flow, and rock fluidization during impact cratering: an example from the Upheaval Dome structure, Utah. Earth and Planetary Science Letters, 2003, 214: 43–58.

    Article  Google Scholar 

  11. Lloyd, G. E., Knipe, R. J., Deformation mechanisms accommodating faulting of quartzite under upper crustal conditions, Journal of Structural Geology, 1992, 14: 127–43.

    Article  Google Scholar 

  12. Lin, A., Injection veins of crushing-originated pseudotachylyte and fault gouge formed during seismic faulting, Engineering Geology, 1996, 43: 213–224.

    Article  Google Scholar 

  13. Ferguson, J., Martin, H., Nicolaysen, L. O. et al., Gross Brukkaros: A kimberlite-carbonatite volcano, Physics and Chemistry of The Earth, 1975, 9: 219–226.

    Article  Google Scholar 

  14. Allaby, A., Allaby, M., The concise Oxford Dictionary of Earth Sciences, Oxford: Oxford Univ. Press, 1996, 410.

    Google Scholar 

  15. Zhang, J., Zhou, C., Yang, G., Preliminary study on an ancient source patterns (in Chinese with English abstract), Seismology and Geology, 1992, 14(2): 165–175.

    Google Scholar 

  16. Zhang, J., Jiang, L., Xu, J., Progressive deformation of Precambrian adamellitic gneiss response to an uplift-related cooling in eastern Dabie Mountains, central China, Chinese Journal of Geology (in Chinese with English abstract), 2003, 38(1): 114–127.

    Google Scholar 

  17. Liu, J., Dong, S., Zhang, J. et al., Origin, age and significance of pseudotachylites from the eastern Dabieshan orogenic belt, China, Acta Geologica Sinica, 2004, 78(1): 52–60.

    Google Scholar 

  18. Philpotts, A. R., Origin of pseudotachylytes, American Journal of Science, 1964, 262: 1008–1035.

    Google Scholar 

  19. Zhang, J., Liu, S., Zheng, Y., Raman spectral analysis and genetic mechanism of pseudotachylyte in Xiaoqinglin detachment fault, Science in China, Series D, 1998, 41(3): 242–247.

    Google Scholar 

  20. Curewitz, D., Karson, J. A., Ultracataclasis, sintering, and frictional melting in pseudotachylytes from East Greenland, J. Struct. Geol., 1999, 21(7): 1693–1713.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiasheng Zhang.

About this article

Cite this article

Zhang, J., Huang, X. & Liu, J. Tectonic implication of stockwork microbreccias. Chin.Sci.Bull. 50, 68–75 (2005). https://doi.org/10.1360/982004-37

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1360/982004-37

Keywords

Navigation