Chinese Science Bulletin

, Volume 50, Issue 1, pp 68–75 | Cite as

Tectonic implication of stockwork microbreccias

Articles
  • 8 Downloads

Abstract

The stockwork microbreccia found in the Dabie and Helan Mountains bears no relation to either meteorite impact and cryptoexplosion, or fault displacement. It is controlled by tensional or transtensional fracture network in relatively hard felsic crystalline rocks, appearing as breccia with dark cryptocrystalline matrix. The kilometer-scale distribution and complicated relation to fracture system of the stockwork microbreccias, randomly distributed autochthonous fragments of host rock, ultracataclasis without notable displacement in the cryptocrystalline matrix, and a probable solid-state amorphization deformation mechanism all suggest that large-scale, high-energy and rapid brittle fracturing event might have occurred in the rocks at relatively deep crustal level in the areas.

Keywords

stockwork microbreccia Dabie Mountain cryptocrystalline matrix adamellite autochthonous solidstate amorphization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reimold, W. U., Miller, R. McG., Exogenic and endogenic breccias: a discussion of major problematics, Earth-Sci. Rev., 1998, 43: 25–47.CrossRefGoogle Scholar
  2. 2.
    Dressler, B. O., Reimold, W. U., Terrestrial impact melt rocks and glasses, Earth-Sci. Rev., 2001, 56: 205–284.CrossRefGoogle Scholar
  3. 3.
    Goltrant, O., Leroux, H., Doukhan, J. et al., Formation mechanisms of planar deformation features in naturally shocked quarts, Phys. Earth Planet. Inter., 1992, 74: 219–240.CrossRefGoogle Scholar
  4. 4.
    Jankowski, A. F., Sandoval, P., Hayes, J. P., Superlattice effects on solid-state amorphization, NanoStructured Materials, 1995, 5(5): 497–503.CrossRefGoogle Scholar
  5. 5.
    Melosh, H. J., Impact Cratering—A Geologic Process, New York: Oxford University Press, 1989, 245.Google Scholar
  6. 6.
    Stoffler, D., Langenhorst, F., Shock metamorphism of quartz in nature and experiment, I. Basic observation and theory, Meteoritics, 1994, 29: 155–181.Google Scholar
  7. 7.
    Duff, P. McL., D., Holmes’ Principles of Physical Geology, 4th ed., London: Chapman and Hall, 1993, 791.Google Scholar
  8. 8.
    Schwarzman, E. C., Meyer, C. E., Wilshire, H. G., Pseudotachylyte from the Vredefort Ring, South Africa, and the origin of some lunar breccias, Bull. Geol. Soc. Am., 1983, 94: 926–935.CrossRefGoogle Scholar
  9. 9.
    Spray, J. G., Pseudotachylyte controversy: Fact or Friction? Geology, 1995, 23: 1119–1122.CrossRefGoogle Scholar
  10. 10.
    Kenkmann, T., Dike formation, cataclastic flow, and rock fluidization during impact cratering: an example from the Upheaval Dome structure, Utah. Earth and Planetary Science Letters, 2003, 214: 43–58.CrossRefGoogle Scholar
  11. 11.
    Lloyd, G. E., Knipe, R. J., Deformation mechanisms accommodating faulting of quartzite under upper crustal conditions, Journal of Structural Geology, 1992, 14: 127–43.CrossRefGoogle Scholar
  12. 12.
    Lin, A., Injection veins of crushing-originated pseudotachylyte and fault gouge formed during seismic faulting, Engineering Geology, 1996, 43: 213–224.CrossRefGoogle Scholar
  13. 13.
    Ferguson, J., Martin, H., Nicolaysen, L. O. et al., Gross Brukkaros: A kimberlite-carbonatite volcano, Physics and Chemistry of The Earth, 1975, 9: 219–226.CrossRefGoogle Scholar
  14. 14.
    Allaby, A., Allaby, M., The concise Oxford Dictionary of Earth Sciences, Oxford: Oxford Univ. Press, 1996, 410.Google Scholar
  15. 15.
    Zhang, J., Zhou, C., Yang, G., Preliminary study on an ancient source patterns (in Chinese with English abstract), Seismology and Geology, 1992, 14(2): 165–175.Google Scholar
  16. 16.
    Zhang, J., Jiang, L., Xu, J., Progressive deformation of Precambrian adamellitic gneiss response to an uplift-related cooling in eastern Dabie Mountains, central China, Chinese Journal of Geology (in Chinese with English abstract), 2003, 38(1): 114–127.Google Scholar
  17. 17.
    Liu, J., Dong, S., Zhang, J. et al., Origin, age and significance of pseudotachylites from the eastern Dabieshan orogenic belt, China, Acta Geologica Sinica, 2004, 78(1): 52–60.Google Scholar
  18. 18.
    Philpotts, A. R., Origin of pseudotachylytes, American Journal of Science, 1964, 262: 1008–1035.Google Scholar
  19. 19.
    Zhang, J., Liu, S., Zheng, Y., Raman spectral analysis and genetic mechanism of pseudotachylyte in Xiaoqinglin detachment fault, Science in China, Series D, 1998, 41(3): 242–247.Google Scholar
  20. 20.
    Curewitz, D., Karson, J. A., Ultracataclasis, sintering, and frictional melting in pseudotachylytes from East Greenland, J. Struct. Geol., 1999, 21(7): 1693–1713.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  1. 1.Institute of GeologyChina Earthquake AdministrationBeijingChina
  2. 2.Institute of GeomechanicsChinese Academy of Geological SciencesBeijingChina

Personalised recommendations