Chinese Science Bulletin

, Volume 50, Issue 7, pp 672–678 | Cite as

A comparative study on 3-D solar wind structure observed by Ulysses and MHD simulation

  • Xueshang Feng
  • Changqing Xiang
  • Dingkun Zhong
  • Quanlin Fan
Articles
  • 21 Downloads

Abstract

During Ulysses’ first rapid pole-to-pole transit from September 1994 to June 1995, its observations showed that middle-or high-speed solar winds covered all latitudes except those between -20° and +20° near the ecliptic plane, where the velocity was 300–450 km/s. At poleward 40°, however, only fast solar winds at the speed of 700–870 km/s were observed. In addition, the transitions from low-speed wind to high-speed wind or vice versa were abrupt. In this paper, the large-scale structure of solar wind observed by Ulysses near solar minimum is simulated by using the three-dimensional numerical MHD model. The model combines TVD Lax-Friedrich scheme and MacCormack II scheme and decomposes the calculation region into two regions: one from 1 to 22 Rs and the other from 18 Rs to 1 AU. Based on the observations of the solar photospheric magnetic field and an addition of the volumetric heating to MHD equations, the large-scale solar wind structure mentioned above is reproduced by using the three-dimensional MHD model and the numerical results are roughly consistent with Ulysses’ observations. Our simulation shows that the initial magnetic field topology and the addition of volume heating may govern the bimodal structure of solar wind observed by Ulysses and also demonstrates that the three-dimensional MHD numerical model used here is efficient in modeling the large-scale solar wind structure.

Keywords

Ulysses observation solar wind structure numerical simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith, E. J., Marsden, R. G., Ulysses observations from pole-topole: An introduction, Geophys. Res. Lett., 1995, 22(23): 3297–3300.CrossRefGoogle Scholar
  2. 2.
    Lu, X. H., Wei, F. S., Yang, Z. L. et al., Ulysses observations and discussions of acceleration mechanisms for the solar wind, Acta Geophysica Sinica, 1998, 41(4): 437-z43.Google Scholar
  3. 3.
    Phillips, J. L., Bame, S. J., Barnes, A. et al., Ulysses solar wind plasma observations from pole to pole, Geophys. Res. Lett., 1995, 22(23): 3301–3304.CrossRefGoogle Scholar
  4. 4.
    Neugebauer, M., The three-dimensional solar wind at solar activity minimum, Reviews of Geophysics, 1999, 37: 107–126.CrossRefGoogle Scholar
  5. 5.
    Smith, E. J., Ulysses observations of the radial magnetic field, Geophys. Res. Lett., 1995, 22(23): 3317–3320.CrossRefGoogle Scholar
  6. 6.
    Phillips, J. L., Goldstein, B. E., Gosling, J. T. et al., Source of shocks and compressions in the high-latitude solar wind: Ulysses, Geophys. Res. Lett., 1995, 22(23): 3305–3308.CrossRefGoogle Scholar
  7. 7.
    Forsyth, R. J., Balogh, A., Smith, E. J. et al., The underlying mag-netic field direction in Ulysses observations of the southern polar heliosphere, Geophys. Res. Lett., 1995, 22(23): 3321–3324.CrossRefGoogle Scholar
  8. 8.
    Shi, Y., Wei, F. S., Feng, X. S. et al., Three-dimensional MHD simulation for the solar wind structure observed by Ulysses, Chi-nese Science Bulletin, 2001, 46(16): 1354–1357.Google Scholar
  9. 9.
    Han, S. M., Wu, S. T., Dryer, M., A three-dimensional time-de-pendent numerical method of supersonic, super-Alfvenic MHD flow, Computers & Fluids, 1988, 16: 81 -103.CrossRefGoogle Scholar
  10. 10.
    Usmanov, A. V., Goldstein, M. L., Besser, B. P. et al., A global MHD solar wind model with WKB Alfven waves: comparision with Ulysses data, J. Geophys. Res., 2000, 105(A6): 12675–12696.CrossRefGoogle Scholar
  11. 11.
    Usmanov, A. V., Goldstein, M. L., A tilted-dipole MHD model of the solar corona and solar wind, J. Geophys. Res, 2003, 108(A9): 1354, doi: 10.1029/2002JA009777.CrossRefGoogle Scholar
  12. 12.
    Bruno, R., Villante, U., Bavassano, B. et al., In-situ observations of the latitudinal gradients of the solar wind parameters during 1976 and 1977, Solar Phys., 1986, 104: 431–445.CrossRefGoogle Scholar
  13. 13.
    Sheeley, Jr., N. R., Wang, Y. M., Hawley, S. H. et al., Measure-ments of flow speeds in the corona between 2 and 30 Rsun, Astro-phys J., 1997, 484: 472–478.CrossRefGoogle Scholar
  14. 14.
    Roussev, I. I., Gombosi, T. I., Sokolov, I. V. et al., A three dimen-sional model of the solar wind incorporating solar magnetogram observations, The Astrophysical Journal, 2003, 595: L57-L61.CrossRefGoogle Scholar
  15. 15.
    Feng, X. S., Wu, S. T., Fan, Q. L., A class of TVD type combined numerical scheme and its application in MHD simulation, Chinese Journal of Space Science (in Chinese), 2002, 4: 300–308.Google Scholar
  16. 16.
    Feng, X. S., Wu, S. T., Wei, F. S. et al., A class of TVD type com-bined numerical scheme for MHD equations with a survey about numerical methods in solar wind simulations, Space Science Re-views, 2003, 43: 107–110.Google Scholar
  17. 17.
    Pizzo, V., A three-dimensional model of corotating streams in the solar wind, 3. Magnetohydrodynamic streams, J. Geophys. Res., 1982, 87(A6): 4374–4394.CrossRefGoogle Scholar
  18. 18.
    Wang, A. H., Wu, S. T., Suess, S. T. et al., Global model of the co-rona with heat and momentum addition, J. Geophys. Res., 1998, 103(A2): 1913–1922.CrossRefGoogle Scholar
  19. 19.
    Groth, C. P. T., Zeeuw, D., Darren, L., Global three-dimensional MHD simulation of a space weather event: CME formation, inter-planetary propagation, and interaction with the magnetosphere, J. Geophys. Res. Vol., 2000, 105(A11): 25053–25079.CrossRefGoogle Scholar
  20. 20.
    Manchester, W. B., Gombosi, I. V., Tamas, I. et al., Modeling a space weather event from the Sun to the Earth: CME generation and interplanetary propagation, J. Geophys. Res., 2004, 109(A2): 107, doi: 10.1029/2003JA010150.CrossRefGoogle Scholar
  21. 21.
    Wei, F. S., Feng, X. S., Cai, H. C. et al., Global distribution of cor-onal mass outputs and its relation to solar magnetic field structures, J. Geophys. Res., 2003, 108(A6): 1238, doi: 10.1029/ 2002JA009439.CrossRefGoogle Scholar
  22. 22.
    Saito, K., Poland, A. I., Munro, R. H., A study of the background corona near solar minimum, Solar Phys., 1977, 55: 121 -134.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  • Xueshang Feng
    • 1
    • 2
  • Changqing Xiang
    • 1
    • 2
  • Dingkun Zhong
    • 1
    • 2
  • Quanlin Fan
    • 1
    • 2
  1. 1.SIGMA Weather GroupKey Laboratory of Space WeatherBeijingChina
  2. 2.Key Labo-ratory of Geospace Environment and Geodesy, Ministry of Education, Center for Space Science and Applied ResearchChinese Academy of SciencesBeijingChina

Personalised recommendations