Advertisement

Chinese Science Bulletin

, Volume 49, Issue 21, pp 2266–2271 | Cite as

The 5′ untranslated region of fruA mRNA in Myxococcus xanthus positively regulates the expression of its own gene

Articles
  • 9 Downloads

Abstract

Myxococcus xanthus provides an excellent model organism for studying the mechanism of multicellular morphogenesis. The mRNA for FruA, a transcription factor essential for the development of M. xanthus, contains a very long 5′-UTR consisting of 235 nucleotides. Using lacZ as a reporter gene, two fruA-lacZ translational fusions retaining or lacking the fruA 5′-UTR were constructed and separately integrated at phage Mx8 attachment site (attB) in M. xanthus chromosome. Deletion in 5′-UTR between nucleotides from +4 to +220 abolished fruA-lacZ expression during development, indicating that the 5′-UTR is essential for the induction of fruA. Prediction of the RNA secondary structure of 5′-UTR shows that this region could form an extremely stable three-helix junction structure, which might be a binding site for a regulatory protein or contain a cis-acting element(s) to control fruA expression. Thus, the 5′-UTR of fruA mRNA positively regulates the expression of its own gene.

Keywords

Myxococcus xanthus fruA 5′-UTR development regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dworkin, M., Recent advances in the social and developmental biology of the myxobacteria, Microbiol. Rev., 1996, 60: 70–102.Google Scholar
  2. 2.
    Shimkets, L. J., Intercellular signaling during fruiting-body development of Myxococcus xanthus, Annu. Rev. Microbiol., 1999, 53: 525–549.CrossRefGoogle Scholar
  3. 3.
    Zhou, L., Li, Y. Z., Li, J., Multicellular morphogenesis in Myxobacteria and its molecular regulation, Prog. Biochem. Biophys., 1999, 26(6): 544–547.Google Scholar
  4. 4.
    Ogawa, M., Fujitani, S., Mao, X. et al., FruA, a putative transcription factor essential for the development of Myxococcus xanthus, Mol. Microbiol., 1996, 22: 7 57–767.Google Scholar
  5. 5.
    Sogaard-Andersen, L., Overgaard, M., Lobedanz, S. et al., Coupling gene expression and multicellular morphogenesis during fruiting body formation in Myxococcus xanthus, Mol. Microbiol., 2003, 48: 1–8.CrossRefGoogle Scholar
  6. 6.
    Horiuchi, T., Taoka, M., Isobe T. et al., Role offruA and csgA genes in gene expression during development of Myxococcus xanthus, Analysis by two-dimensional gel electrophoresis, J. Biol. Chem., 2002, 277: 26753–26760.CrossRefGoogle Scholar
  7. 7.
    Ueki, T., Inouye, S., Identification of an activator protein required for the induction offruA, a gene essential for fruiting body development in Myxococcus xanthus, Proc. Natl. Acad. Sci. USA, 2003, 100: 8782–8787.CrossRefGoogle Scholar
  8. 8.
    Kroos, L., Kuspa, A., Kaiser D., A global analysis of developmentally regulated genes in Myxococcus xanthus, Dev. Biol., 1986, 117: 252–266.CrossRefGoogle Scholar
  9. 9.
    Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res., 2003, 31: 3406–3415.CrossRefGoogle Scholar
  10. 10.
    Minton, N. P., Improved plasmid vectors for the isolation of translational lac gene fusions, Gene, 1984, 31: 269–273.CrossRefGoogle Scholar
  11. 11.
    Magrini, V., Creighton, C., White, D. et al., The aadA gene of plasmid R100 confers resistance to spectinomycin and streptomycin in Myxococcus xanthus, J. Bacteriol., 1998, 180: 6757–6760.Google Scholar
  12. 12.
    Shimkets, L. J., Asher S. J., Use of recombination techniques to examine the structure of the csg locus of Myxococcus xanthus, Mol GenGenet, 1988, 211: 63–71CrossRefGoogle Scholar
  13. 13.
    Tojo, N., Sanmiya, K., Sugawara, H. et al., Integration of bacteriophage Mx8 into the Myxococcus xanthus chromosome causes a structural alteration at the C-terminal region of the IntP protein, J. Bacteriol., 1996, 178: 4004–4011.Google Scholar
  14. 14.
    Li, S. F., Shimkets L. J., Site-specific integration and expression of a developmental promoter in Myxococcus xanthus, J Bacteriol, 1988, 170: 5552–5556Google Scholar
  15. 15.
    Kil, K. S., Brown, G. L., Downard, J. S., A segment of Myxococcus xanthus ops DNA functions as an upstream activation site for tps gene transcription, J. Bacteriol., 1990, 172: 3081–3088.Google Scholar
  16. 16.
    Viswanathan, P., Kroos, L., cis elements necessary for developmental expression of a Myxococcus xanthus gene that depends on C signaling, J. Bacteriol., 2003, 185: 1405–1414.CrossRefGoogle Scholar
  17. 17.
    Wren, J. D., Forgacs, E., Fondon J. W. 3rd. et al., Repeat polymorphisms within gene regions: phenotypic and evolutionary implications, Am. J. Hum. Genet., 2000, 67: 345–356.CrossRefGoogle Scholar
  18. 18.
    Johansson, J., Mandin, P., Renzoni, A. et al., An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes, Cell, 2002, 110: 551–561.CrossRefGoogle Scholar
  19. 19.
    Grobe, K., Esko, J. D., Regulated translation of heparan sulfate N-acetylglucosamine N-deacetylase/n-sulfotransferase isozymes by structured 5′-untranslated regions and internal ribosome entry sites, J. Biol. Chem., 2002, 277: 30699–30706.CrossRefGoogle Scholar
  20. 20.
    Scott, L. G., Williamson, J. R., Interaction of the Bacillus stearothermophilus ribosomal protein S15 with its 5′-translational operator mRNA, J. Mol. Biol., 2001, 314: 413–422.CrossRefGoogle Scholar
  21. 21.
    Horiuchi, T., Akiyama, T., Inouye, S. et al., Regulation of FRUA expression during vegetative growth and development of Myxococcus xanthus, J. Mol. Microbiol. Biotechnol., 2003, 5: 87–96.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  1. 1.Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Genetics and Developmental BiologySoutheast University School of Basic Medical SciencesNanjingChina

Personalised recommendations