Science in China Series D: Earth Sciences

, Volume 48, Issue 12, pp 2049–2060 | Cite as

Progress and review of the studies on the end-Triassic mass extinction event



The mass extinction at the end-Triassic is one of the five biggest in the Phanerozoic However it is the least well understood among these five events, and only till last decade it became a great academic interesting subject to geologists. The evidences for this event come obviously from bivalves, brachiopods, ammonites, corals, radiolaria, ostracods and foraminifera of marine habitats, and plants and tetrapods of terrestrial realm. By contrast, for some of other groups, such as marine gastropods and marine vertebrates, no mass extinction has been recognized yet. The extinction event is strongly marked at specific level but shown a complicated situation at generic and family levels. Dramatic changing of the environment, such as the temperature raise due to the greenhouse effect, the marine anoxic habitats caused by a sudden transgression after the regression at the end of Triassic, has been claimed to be the main cause of the extinction. Many hypotheses have been suggested to demonstrate the mechanisms of the environment changing, among which two popular ones are the bolide impact and volcanic eruption.

The Triassic-Jurassic (Tr-J) boundary mass extinction event is still poorly understood because no enough data have been obtained from the Tr-J boundary successional sections of both marine and terrestrial sediments, and most of these studies were regionally restricted. The basic aspects of the event and its associated environmental conditions remain poorly characterized and the causal mechanism or mechanisms are equivocal. Some authors even doubt its occurrence. China has many successionally developed terrestrial and marine Tr-J sections. Detailed studies of these sections may be important and significant for well understanding of the event.


progress review end-Triassic mass extinction mechanism Tr-J boundary 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Newell, N. D., Crisis in the history of life, Sci. Am., 1963, 208: 76–92.CrossRefGoogle Scholar
  2. 2.
    Newell,N. D., Revolutions in the history of life. Geological Society of America Special Paper, 1967, 89: 63–91.Google Scholar
  3. 3.
    Raup,D. M., Sepkoski, J. J. Jr., Mass extinctions in the marine fossil record. Science, 1982, 215: 1501–1503.CrossRefGoogle Scholar
  4. 4.
    Raup,D. M., Sepkoski, J. J. Jr., Periodic Extinction of Families and Genera. Science, 1986, 231: 833–836.CrossRefGoogle Scholar
  5. 5.
    Sepkoski, J. J. Jr., Mass extinction in the Phanerozoic oceans: A review. Geological American Special Paper, 1982, 190: 283–289.Google Scholar
  6. 6.
    Sepkoski, J, J, Jr., Global bioevents and the Question of periodic-ity (ed. Walliser,.O.), Global bioevents: Lecture notes in earth Sciences, 1986, 8: 47–61.Google Scholar
  7. 7.
    Sepkoski, J. J. Jr., Pattern of Phanerozoic extinction: a perspective from global data bases, Global Events and Event Stratigraphy in the Phanerozoic (ed. Walliser, O. H.), Berlin: Springer-Verlag, 1996, 35–51.Google Scholar
  8. 8.
    Hallam, A., The end-Triassic bivalve extinction event. Palaeorgeogr Palaeoclim Palaeoecol, 1981, 35: 1–44.CrossRefGoogle Scholar
  9. 9.
    Hallam, A., The end-Triassic mess extinction event, Global Catas-trophes in Earth History (eds. Sharpton, V. L., Ward P. D.), Geol. Soc. Amer. Spec. Paper, 1990, 247: 577–583.Google Scholar
  10. 10.
    Hallam, A., How catastrophic was the end-Triassic mass extinction? Lethaia, 2002, 35: 147–157.CrossRefGoogle Scholar
  11. 11.
    Benton, M. J., The Fossil Record 2, London: Chapman and Hall, 1993.Google Scholar
  12. 12.
    Sepkoski, J. J. Jr., A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinction, Paleobiology, 1984, 10: 246–267.Google Scholar
  13. 13.
    Benton, M. J., More than one event in the late Triassic mass extinction, Nature, 1986, 321: 857–861.CrossRefGoogle Scholar
  14. 14.
    Olsen, P. E., Shubin, N. H., Anders, M. H., New Early Jurassic Tetrapod Assemblages Constrain Tr-J Tetrapod Extinction Event, Science, 1987, 237: 1025–1029.CrossRefGoogle Scholar
  15. 15.
    Ward, P. D., Haggard, J. W., Carter, E. S. et al., Sudden productivity collapse associated with the Triassic-Jurassic boundary mass extinction, Science, 2001, 292: 1148–1151.CrossRefGoogle Scholar
  16. 16.
    McElwain, J. C., Beerling, D. J., Woodward, F. I., Fossil Plants and Global Warming at the Triassic-Jurassic Boundary, Science, 1999, 285: 1386–1390.CrossRefGoogle Scholar
  17. 17.
    Olsen, P. E., Kent, D. V., Sues, H. D. et al., Ascent of dinosaurs linked to an Iridium anomaly at the Triassic-Jurassic boundary, Science, 2002, 296: 1305–1307.CrossRefGoogle Scholar
  18. 18.
    Olsn, P. E., Koeberl, C., Huber, H. et al., Continental Triassic-Jurassic boundary in central Pangea: Recent progress and discussion of an Ir anomaly, Catastrophic events and mass extincttions: Impacts and beyond (eds. Koeberl C., Macleod K.), Geol. Soc. Amer. Spec. Paper, 2002, 365: 505–522.Google Scholar
  19. 19.
    Halam, A., Major bioevents in the Triassic and Jurassic Global Events and Event Stratigraphy (eds. Koeberl, C., Macleod, K.), Berlin: Springer-Verlag, 1995, 265–283.Google Scholar
  20. 20.
    Halam, A., The end-Triassic extinction in relation to a superplume event, Geol. Soc. Am. Abs. Prog., 2000, 37: 380.Google Scholar
  21. 21.
    Halam, A., Wignall, P. B., Mass Extinction and Their Aftermath, Oxfrd: Oxford Univ. Press, 1997, 320.Google Scholar
  22. 22.
    Tanner, L. H., Hubert, J. E., Coffey, B. P. et al., Stability of atmospheric CO2 levels across the Triassic/Jurassic boundary, Nature, 2001, 411: 675–677.CrossRefGoogle Scholar
  23. 23.
    Olsen, P. E., Giant lava flows, mass extinctions, and mantle plumes, Science, 1999, 284: 604–605.CrossRefGoogle Scholar
  24. 24.
    Walkden, G., Parker, J., Kelley, S., A Late Triassic impact ejecta layer in southwestern Britain, Science, 2002, 298: 2185–2188.CrossRefGoogle Scholar
  25. 25.
    Stothers, R. B., Flood basalts and extinction events, Geophysical Research Letters, 1993, 20: 1399–1402.CrossRefGoogle Scholar
  26. 26.
    Courtillot, V. E., Mass extinctions in the last 300 million years: one impact and seven flood basalts? Israel. J. Earth Sci., 1994, 43: 255–266.Google Scholar
  27. 27.
    Marzoli, A., Renne, P. R., Piccrillo, E. M. et al., Extensive 200-million-year-old continental flood basalts of the central Atlantic Province, Science, 1999, 284: 616–618.CrossRefGoogle Scholar
  28. 28.
    Yapp, C. J., Poths, H., Carbon isotopes in continental weathering environments and variations in ancient atmospheric CO2 pressure, Earth Planet Sci. Lett., 1996, 137: 71–82.CrossRefGoogle Scholar
  29. 29.
    Hesselbo, S. P., Atuart, A. R., Finn, S. et al., Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: Alink to initiation of massive volcanism? Geology, 2002, 30(3): 251–254.CrossRefGoogle Scholar
  30. 30.
    Palfy, J., Attila, D., Janos, H. et al., Carbon isotope anomaly and other geochemical changes at the Triassic-Jurassic boundary from a marine section in Hungary, Geology, 2001, 29(11): 1047–1050.CrossRefGoogle Scholar
  31. 31.
    Palfy, J., Mortensen, J. K., Carter, E. S. et al., Timing the end- tri-assic mass extinction: first on land, then in the sea? Geology, 2000, 28: 39–42.CrossRefGoogle Scholar
  32. 32.
    Allasinaz, A., The Late Triassic-Hettangian bivalve turnover in Lombardy (Southern Alps), Revista Italiana di Paleontologia e Stratigrafia, 1992, 97: 431–454.Google Scholar
  33. 33.
    McRoberts, C. A., Newton, C. R., Selective extinction among end-Triassic European bivalves, Geology, 1995, 23: 102–104.CrossRefGoogle Scholar
  34. 34.
    Gaetani, M., Faune hettangiane della parte orientale della provincea di Bergamo, Rivista Italiana di Paleontologia e Stratigrafia, 1970, 76: 355–442.Google Scholar
  35. 35.
    Pearson, D. A. B., Rhaetian brachiopods of Europe, Denkschriften der Nature Historisches Museum Wien, 1977, 1: 1–70.Google Scholar
  36. 36.
    Manceñido, M. O., A systematic summary of the stratigraphic distribution of Jurassic Rhynchonellidae (Brachipoda), GeoRes Forum, 2000, 6: 387–396.Google Scholar
  37. 37.
    Tozer, E. T., Triassic Ammonoidea: Geographic and Stratigraphic distribution (eds. House, M. R., Senior, J. R.), The Ammonoidea, London: Academic Press, 1981, 397–431.Google Scholar
  38. 38.
    Tozer, E. T., Latest Triassic ammonoid faunas and biochronology, western Canada, Geological Survey of Canada Paper, 1979, 79-1 B: 127–135.Google Scholar
  39. 39.
    Teichert, C., The Permian-Triassic revisited, Extinction Events in Earth History (eds. Kauffman, E. G., Walliser, O. H.), Berlin: Springer-Verlag, 1990, 199–238.CrossRefGoogle Scholar
  40. 40.
    Taylor, D. G., Boelling, K., Guex, J., The Triassic/Jurassic system boundary in Gabbs Formation, Nevada, GeoRes Forum, 2000, 6: 225–236.Google Scholar
  41. 41.
    Taylor, D. G., Guex, J., Rakus, M., Hettangian and Sinemurian ammonoid zonation for the western Cordillera of North America, Bull. Geol. Univ. Lausanne, 2001, 350: 381–421.Google Scholar
  42. 42.
    Stanley, Jr. G. D., The history of Early Mesozoic reef comm unities: a three-step process, Palaios, 1988, 3: 170–183.CrossRefGoogle Scholar
  43. 43.
    Beauvais, L., Evolution and diversification of Jurassic Scleractinia, Palaeontographica A, 1984, 54: 219–224.Google Scholar
  44. 44.
    Whatley, R. C., Patterns and rates of evolution among Mesozoic Qstracoda Evolutionary Biology of Ostracoda (eds. Hanai, T., Ikeya, N., Ishizaki, K.), Tokyo: Kodansha, 1988, 1021–1040.Google Scholar
  45. 45.
    El Shaarawy, Z., Foraminifera and ostracods of the top most Triassic and basal Jurassic of England Wales and Austia, PhD. Thesis University of Birmingham, 1981.Google Scholar
  46. 46.
    Tipper, H. W., Carter, E. S., Orchard, M. J. et al., The Triassic-Jurassic(T-J) boundary in Queen Charlotte Islands, British Columbia defined by ammonites, conodonts and radiolarians, Geobios., 1994, 17: 485–492.CrossRefGoogle Scholar
  47. 47.
    Carter, E. S., Radiolarian extinction and regeneration at the Triassic-Jurassic boundary: an example from Queen Charlotte Islands, British Columbia, Canada. Publ. Ocas. Inst. Geol., UNAM, 1997, 1: 5–7.Google Scholar
  48. 48.
    Hori, R., Radiolarian biostratigraphy at the Triassic/Jurassic period boundary in bedded cherts from the Inuyama area, central Japan, Journal of Geosciences, Osaka City University, 1992, 35: 53–65.Google Scholar
  49. 49.
    Tekin, U. K., Biostratigraphy and systematics of late Middle and late Triassic radiolarians from the Taurus Mountains and Ankara region, Turkey, Geologisch-Paläontologisch Mitteilumgen, Son-derband, 1999, 5, 1–296.Google Scholar
  50. 50.
    Guex, J., Bartolini, A., Taylor, D., Discovery of Neophyllites (ammonite, Cephalopoda, Early Hettangian) in the New York Canyon sections (Gabbs Valley Range, Nevada) and discussion of the δ 13C negative anomaqlies located around the Triassic-Jurassic boundary, Bull., Soc. Vaud Sci. Nat., 2002, 88(2): 247–255.Google Scholar
  51. 51.
    Benton, M. J., The Late Triassic tetrapod extinction events, The Beginning of thr Age of Dinosaurs (ed. Padian, K.), Cambridge: Cambridge Univ. Press, 1986, 303–320.Google Scholar
  52. 52.
    Bardet, N., Extinction events among Mesozoic marine reptiles, Hist. Biol., 1994, 7: 313–324.CrossRefGoogle Scholar
  53. 53.
    Harris, T. M., The fossil flora of Scoresby Sound East Greenland. Part 5: Stratigraphic relations of the plant beds: Meddelelser om Grønland, 1937, 112(2): 1–112.Google Scholar
  54. 54.
    Pedersen, K. R., Lund, J. J., Palynology of the plant-bearing Rhaetian to Hettangian Kap Stewart Formation, Scores by Sund, east Greenland, Review of Palaeobot. and Palynol., 1979, 32: 1–69.Google Scholar
  55. 55.
    Fowell, S. J., Olsen, P. E., Time calibration of Triassic/Jurassic microfloral turnover, eastern North America, Tectonophysics, 1993, 222: 361–369.CrossRefGoogle Scholar
  56. 56.
    Fowell, S. J., Cornet, B., Olsen, P. E., Geologically repid Late Triassic extinctions: Palynological evidence from the Newark Supergroup, Pangea: Paleoclimate, tectonics, and sedimentation during accretion, zenith, and breakup of a supercontinent (ed. Klein, G. D.), Geological Society of America Special Paper, 1994, 288: 197–206.Google Scholar
  57. 57.
    Embry, A. F., Suneby, L. B., The Triassic-Jurassic boundary in the Sverdrup Basin, Arctic Canada, Canadian Society of Petroleum Geologists Memoir, 1994, 17: 857–868.Google Scholar
  58. 58.
    Kelber, K. P., Phytostratigraphische aspects der makrofloren des süddeutschen Keupers, Doc. Nat., 1998, 117: 89–115.Google Scholar
  59. 59.
    Lund, J. J., Rhaetic to Lower Liassic Palynology of the Onshore South-Eastern North Sea Basin, Copenhagen: Danmarks Geologiske Undersøgels, II. Rk., 1977, 109Google Scholar
  60. 60.
    Fisher, M. J., Dunay, R. E., Palynology and the Triassic/Jurassic boundary, Review of Palaeobot and Palynol, 1981, 34: 129–135.CrossRefGoogle Scholar
  61. 61.
    Karle, U., Paltostratigraphische Untersuchung eines Rhät/Lias- Profils am Fonsjoch, Achensee (Nördliche Kalkalpen, österreich), Mitteilungen der Österreich Geologische Gesellschaft, 1984. 77: 331–353.Google Scholar
  62. 62.
    Ash, S., Fossil plants and the Triassic-Jurassic boundary, The Beginning of the Age of Dinosaurs (ed. Padian, K.), Cambridge: Cambridge University Press, 1986. 21–29.Google Scholar
  63. 63.
    Sarjeant, W. A. S., Volkheimer, W., Zhang, W., Jurassic palynomorphs of the Circum-Pacific region, The Jurassic of the Circum-Pacific (ed. G. E. G. Westermann)., Cambridge: Cam-bridge University Press, 1992, 373–392.Google Scholar
  64. 64.
    Deng, S., Yao, Y., Ye, D. et al., Jurassic System in the North of China, I, Stratum Introduction (in Chinese with English abstract), Beijing: Petroleum Industry Press, 2003, 399.Google Scholar
  65. 65.
    Lu, Y., Deng, S., Triassic-Jurassic sporopollen assemblages on the Southern Margin of the Junggar Basin, Xinjiang and the T-J boundary, Acta Geologica Sinica (in Chinese with English abstract), 2005, 79(1): 15–27.Google Scholar
  66. 66.
    Helby, R., Morgan, R., Partridge A. D., A palynological zonation of the Australian Mesozoic Studies in Australian palynology, Memoir of the Association of Australian Palynology (ed. Jell, P. A.), 1987, 4: 1–94.Google Scholar
  67. 67.
    Olsen, P. E., Fowell, S. J., Cornet, B., The Triassic/Jurassic boundary in continental rocks of eastern North America, A Progress Report, Geol. Soc. Amer. Spec. Paper, 1990, 247: 585–594.Google Scholar
  68. 68.
    Benton, M. J., Late Triassic to Middle Jurassic extinctions among continental tetrapods: testing the pattern, in The Shadow of Dinosaurs (eds. Fraser, N. C., Sues, H. D.), 1994, 366–397.Google Scholar
  69. 69.
    Weems, R E., The “terminal Triassic catastrophic event” in perspective: a review of Carboniferous through Early Jurassic vertebrate extinction patterns, Palaeogeogr. Palaeoclim. Palaeoecol., 1992, 94: 1–29.CrossRefGoogle Scholar
  70. 70.
    Lucas, S. G., Triassic tetrapod extinctions and the complied correlation effect, Canadian Society of Petroleum Geologists. Memoir, 1994, 17: 869–875.Google Scholar
  71. 71.
    Cuny, G., French vertebrate faunas and the Triassic-Jurassic boundary, Palaeogeogr. Palaeoclim. Palaeoecol., 1995, 119: 343–358.CrossRefGoogle Scholar
  72. 72.
    Embry, A. F., Otapirian Stage: Its fauna and microflora: International Association of Sedimentologists Special Publication, 1988, 42: 249–260.Google Scholar
  73. 73.
    Hallam, A., Wignall, P. B., Mass extinctions and sealevel changes, Earth Sci. Rev., 1999, 48: 217–250.CrossRefGoogle Scholar
  74. 74.
    Hallam, A., Goodfellow, W. D., Facies and geochemical evidence bearing on the end-Triassic disappearance of the Alpine reef eco-system, Historical Biology, 1990, 4: 131–138.Google Scholar
  75. 75.
    McRoberts, C. A., The Triassic-Jurassic ecostratigraphic transition in the Lombardian Alps, Italy, Palaergeogr. Palaeoclim. Palaeoecol., 1994, 110: 145–166.CrossRefGoogle Scholar
  76. 76.
    Hillebrandt, A., The Triassic/Jurassic boundary and Hettangian biostratigraphy in the area of the Utcubamba Valey (north Peru), 3 eme Sysposium International de Stratigraphie du Jurassique, Geobios. Memoire Special (ed. Cariou, E.), 1994 1: 297–307.Google Scholar
  77. 77.
    Ward, P., Garrison, G. H., Haggart, J. W. et al., Isotopic evidence bearing on Late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and cause of the Triassic/Jurassic mass extinction, Earth and Planetary Science Letters, 2004, 224: 589–600.CrossRefGoogle Scholar
  78. 78.
    Warrington, G., Cope, J. C. W., Ivimey-Cook, H. C., St. Audrie’s Bay, Somerset, England: A candidate global stratotype section and point for the base of the Jurassic System, Geological Magazine, 1994, 131: 191–200.Google Scholar
  79. 79.
    Guex, J., Bartolini, A., Atudorei, V. et al., High-resolution ammonite and carbon isotope stratigraphy across the Triassic-Jurassic boundary at New York Canyon (Nevada), Earth and Planetary Science Letters, 2004, 225: 29–41.CrossRefGoogle Scholar
  80. 80.
    Morante, R., Hallam, A., Organic carbon isotopic record acress the Triassic-Jurassic boundary in Austria and iits bearing on the cause of the mass extinction, Geology, 1996, 24(5): 391–394.CrossRefGoogle Scholar
  81. 81.
    Woodward, F. I., Stomatal numbers are sensitive to increases in CO2 from preindustrial levels, Nature, 1987, 327: 617–618.CrossRefGoogle Scholar
  82. 82.
    Poole, I., Weyes, J. D., Lawson, T. et al., Variation in stomatal density and index: implications for palaeoclimatic reconstructions. Plant Cell Environment, 1996, 19: 705–712.CrossRefGoogle Scholar
  83. 83.
    Retallack, G. J., A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles, Nature, 2001, 411: 287–290.CrossRefGoogle Scholar
  84. 84.
    Retallack, G. J., Triassic-Jurassic atmospheric CO2 spike, Nature, 2002, 415: 387–388.CrossRefGoogle Scholar
  85. 85.
    Beerling, D., Palaeoclimatology (Communication arising): CO2 and the end-Triassic mass extinction, Nature, 2002, 415: 386–387.CrossRefGoogle Scholar
  86. 86.
    McElwain, J. C., Chaloner, W. G., Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Palaeozoic, Annals of Botany, 1995, 76: 389–395.CrossRefGoogle Scholar
  87. 87.
    Berner, R. A., Geochemistry and Geophysics: The Rise of Plants and Their Effect on Weathering and Atmospheric CO2, Science, 1997, 276: 544–546.CrossRefGoogle Scholar
  88. 88.
    Tanner, L. H., Reply (Paleoclimaology: CO2 and the end-Triassic Mass Extinction), Nature, 2002, 415: 388.CrossRefGoogle Scholar
  89. 89.
    Fabriciucs, F., Friedrichsen, V., Jascobshagen, V., Paläotempera-turen und Paläoklima in Obertrias und Lias der Alpen. Gel. Rundsch, 1970, 59: 805–826.CrossRefGoogle Scholar
  90. 90.
    Tschudy, R. H., Pilmore, C. L., Orth, C. J. et al., Disruption of the terrestrial plant ecosystem at the Cretaceous-Tertiary boundary, western interior, Science, 1984, 225: 1030–1032.CrossRefGoogle Scholar
  91. 91.
    Bice, D. M., Newton, C. R., McCauley, S. et al., Shocked Quartz at the Triassic-Jurassic boundary in Italy, Science, 1992, 255: 443–446.CrossRefGoogle Scholar
  92. 92.
    Badjukov, D. D., Lobitzer, H., Nazarov, M. A., Quartz grains in the Triassic-Jurassic boundary sediments from Northern Lime-stone Alps, Austria, Lunae and Planetary Science Letters, 1987, 28: 38–39.Google Scholar
  93. 93.
    Simms, M. J., Uniquely extensive seismite from the latest Triassic of the United Kingdom: Evidence for bolide impact? Geology, 2003, 31(6): 557–560.CrossRefGoogle Scholar
  94. 94.
    Spray, G. J, Kelley, S. P., Rowley, B. D., Evidence for a late Triassic multiple impact event on Earth, Nature, 1998, 392: 171–173.CrossRefGoogle Scholar
  95. 95.
    Kent, D. V., Olsen, P. E., Magnetic polarity stratigraphy and pale-olatitude of the Triassic-Jurassic Blomidon Formation in the Fundy basin (Canada): implications for Early Mesozoic tropical climate gradients, Earth Planet. Sci. Lett., 2000, 179: 311–324.CrossRefGoogle Scholar
  96. 96.
    Hodych, J. P., Dunning, G. R., Did the Manicouagan impact trigger end-of-Triassic mass-extinction? Geology, 1992, 20: 51–54.CrossRefGoogle Scholar
  97. 97.
    Tanner, L. H., Lucas, S. G., Chapman, M. G., Assessing the record and causes of Late Triassic extinctions, Earth-Science Reviews, 2004, 65: 103–139.CrossRefGoogle Scholar
  98. 98.
    Cohen, A. S., Coe, A. L., New geochemical evidence for the onset of volcanism in the Central Atlantic magmatic province and environmental change at the Triassic-Jurassic boundary, Geology, 2002, 30: 267–270.CrossRefGoogle Scholar
  99. 99.
    Yin, J., Wang, X., Jin, C., The first Triassic-Jurassic boundary section in East Tethys, Proceedings of the Third National Strati-graphical Conference of Chian (in Chinese), Beijing: Geological Publishing House, 2000, 179–185.Google Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  1. 1.Research Institute of Petroleum Exploration and DevelopmentBeijingChina
  2. 2.Key Laboratory of Oil and Gas Reservoir of PetroChinaBeijingChina
  3. 3.China University of GeosciencesBeijingChina
  4. 4.Institute of GeologyChina Earthquake AdministrationBeijingChina

Personalised recommendations