AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis

  • Li Chunguang 
  • Qijun Chen
  • Xinqi Gao
  • Bishu Qi
  • Naizhi Chen
  • Shouming Xu
  • Jia Chen
  • Xuechen Wang


There is increasing evidence for considerable interlinking between the responses to heat stress and oxidative stress, and recent researches suggest heat shock transcription factors (Hsfs) play an important role in linking heat shock with oxidative stress signals. In this paper, we present evidence that AtHsfA2 modulated expression of stress responsive genes and enhanced tolerance to heat and oxidative stress in Arabidopsis. Using Northern blot and quantitative RT-PCR analysis, we demonstrated that the expression of AtHsfA2 was induced by not only HS but also oxidative stress. By functional analysis of AtHsfA2 knockout mutants and AtHsfA2 overexpressing transgenic plants, we also demonstrated that the mutants displayed reduced the basal and acquired thermotolerance as well as oxidative stress tolerance but the overexpression lines displayed increased tolerance to these stress. The phenotypes correlated with the expression of some Hsps and APX1, ion leakage, H2O2 level and degree of oxidative injuries. These results showed that, by modulated expression of stress responsive genes, AtHsfA2 enhanced tolerance to heat and oxidative stress in Arabidopsis. So we suggest that AtHsfA2 plays an important role in linking heat shock with oxidative stress signals.


heat shock transcription factor heat stress response oxidative stress response tolerance 


  1. 1.
    Howarth, C. J., Ougham, H. J., Gene expression under temperature stress, New Phytol., 1993, 125: 1–26.CrossRefGoogle Scholar
  2. 2.
    Jaenicke, R., Creighton, T. E., Junior chaperones, Curr. Biol., 1993, 3: 234–235.PubMedCrossRefGoogle Scholar
  3. 3.
    Jakob, U., Buchner, J., Assisting spontaneity: the role of HSP90 and smHSPs as molecular chaperones, Trends Biochem. Sci., 1994, 19: 205–211.PubMedCrossRefGoogle Scholar
  4. 4.
    Ellis, R. J., Chaperone substrates inside the cell, Trends Biochem. Sci., 2000, 25: 210–212.PubMedCrossRefGoogle Scholar
  5. 5.
    Hartl, F. U., Hayer-Hartl, M., Molecular chaperones in the cytosol: From nascent chain to folded protein, Science, 2002, 295: 1852–1858.PubMedCrossRefGoogle Scholar
  6. 6.
    Haslbeck, M., sHsps and their role in the chaperone network, Cell Mol. Life Sci., 2002, 59: 1649–1657.PubMedCrossRefGoogle Scholar
  7. 7.
    Morimoto, R., Dynamic remodeling of transcription complexes by molecular chaperones, Cell, 2002, 110: 281.PubMedCrossRefGoogle Scholar
  8. 8.
    Nover, L., Bharti, K., Döring, P. et al., Arabidopsis and the Hsf world: How many heat stress transcription factors do we need? Cell Stress Chap., 2001, 6: 177–189.CrossRefGoogle Scholar
  9. 9.
    Scharf, K. D., Heider, H., Höhfeld, I., et al., The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules, Mol. Cell Biol., 1998, 18: 2240–2251.PubMedGoogle Scholar
  10. 10.
    Schöffl, F., Prandl, R., Reindl, A., Regulation of the heat shock response, Plant Physiol., 1998, 117: 1135–1141.PubMedCrossRefGoogle Scholar
  11. 11.
    Wu, C., Heat stress transcription factors, Annu. Rev. Cell Biol., 1995, 11: 441–469.CrossRefGoogle Scholar
  12. 12.
    Nover, L., Scharf, K. D., Gagliardi, D. et al., The Hsf world: Classification and properties of plant heat stress transcription factors, Cell Stress Chap., 1996, 1: 215–223.CrossRefGoogle Scholar
  13. 13.
    Banzet, N., Richaud, C., Deveaux, Y., et al., Accumulation of small heat shock proteins, including mitochondrial Hsp22, induced by oxidative stress and adaptive response in tomato cells, Plant J., 1998, 13: 519–527PubMedCrossRefGoogle Scholar
  14. 14.
    Dat, J. F., Foyer, C. H., Scott, I.M., Changes in salicylic acid and antioxidants during induction of thermotolerance in mustard seedlings, Plant Physiol., 1998, 118: 1455–1461PubMedCrossRefGoogle Scholar
  15. 15.
    Schett, G., Steiner, C. W., Groger, M., et al., Activation of Fas inhibits heat induced activation of Hsf1 and upregulation of Hsp70, FASEB J. 1999, 13: 833–842.PubMedGoogle Scholar
  16. 16.
    Lee, B. H., Won, S. H., Lee, H. S., et al., Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice, Gene, 2000, 245: 283–290.PubMedCrossRefGoogle Scholar
  17. 17.
    Morgan, R. W., Christman, M. F., Jacobson, F. S. et al., Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins, Proc. Natl. Acad. Sci. USA, 1986, 83: 8059–8063.PubMedCrossRefGoogle Scholar
  18. 18.
    Davidson, J. F., Whyte, B., Bissinger, P. H. et al., Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 1996, 93: 5116–5121.PubMedCrossRefGoogle Scholar
  19. 19.
    Gong, M., Li, Y. J., Chen, S. Z., Abscisic acid induced thermotolerance in maize seedlings is mediated by Ca2+ and associated with antioxidant systems, J. Plant Physiol., 1998, 153: 488–496.Google Scholar
  20. 20.
    Storozhenko, S., De Pauw, P., Van Montague, M. et al., The heat-shock element is a functional component of the Arabidopsis APX1 gene promotor, Plant Physiol., 1998, 118: 1005–1014.PubMedCrossRefGoogle Scholar
  21. 21.
    Lee, H. S., Kim, K. Y., You, S. H. et al., Molecular characterization and expression of a cDNA encoding copper/zinc superoxide dismutase from cultured cells of cassava (Mannihot esculenta Crantz), Mol. Gen. Genet., 1999, 262: 807–814.PubMedGoogle Scholar
  22. 22.
    Panchuk, I. I., Volkov, R. A., Schöffl, F., Heat stress and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis, Plant Physiol., 2002, 129: 838–853.PubMedCrossRefGoogle Scholar
  23. 23.
    Davletova, S., Rizhsky, L., Liang, H. J. et al., Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis, Plant Cell, 2005, 17: 268–281.PubMedCrossRefGoogle Scholar
  24. 24.
    Vallelian-Bindschedler, L., Schweizer, P., Mosinger, E. et al., Heat-induced resistance in barley to powderymildew (Blumeria graminis f. sp. Hordei) is associated with bursts of AOS, Physiol. Plant Pathol., 1998, 52: 165–199.Google Scholar
  25. 25.
    Rizhsky, L., Davletova, S., Liang, H. et al., The zinc-finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis, J. Biol. Chem., 2004, 279: 11736–11743.PubMedCrossRefGoogle Scholar
  26. 26.
    Desikan, R., Cheung, M. K., Bright, J. et al., ABA, hydrogen peroxide and nitric oxidesignalling in stomatal guard cells, J. Exp. Bot., 2004, 55: 205–212.PubMedCrossRefGoogle Scholar
  27. 27.
    Mittler, R., Vanderauwera, S., Gollery, M. et al., The reactive oxygen gene network of plants, Trends Plant Sci., 2004, 9: 490–498.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhong, M., Orosz, A., Wu, C., Direct sensing of heat shock and oxidation by Drosophila heat shock transcription factor, Mol. Cell, 1998, 2: 101–108.PubMedCrossRefGoogle Scholar
  29. 29.
    Ahn, S. G., Thiele, D. J., Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress, Genes Dev., 2003, 17: 516–528.PubMedCrossRefGoogle Scholar
  30. 30.
    Alonso, J. M., Stepanova, A. N., Leisse, T. J. et al., Genome-wide insertional mutagenesis of Arabidopsis thaliana, Science, 2003, 301: 653–657.PubMedCrossRefGoogle Scholar
  31. 31.
    Clough, S. J., Bent, A. F., Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J., 1998, 16: 735–743.PubMedCrossRefGoogle Scholar
  32. 32.
    Davis, S. J., Vierstra, R. D., Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants, Plant Mol. Biol., 1998, 365: 521–528.CrossRefGoogle Scholar
  33. 33.
    Varagona, M. J., Schmidt, R. J., Raikhel, N. V., Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein opaque-2, Plant Cell, 1992, 4: 1213–1227.PubMedCrossRefGoogle Scholar
  34. 34.
    Hong, S. W., Lee, U., Vierling, E., Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures, Plant Physiol., 2003, 132: 757–767.PubMedCrossRefGoogle Scholar
  35. 35.
    Brennan, T., Frenkel, C., Involvement of hydrogen peroxide in the regulation of senescence in pear, Plant Physiol., 1977, 59: 411–416PubMedCrossRefGoogle Scholar
  36. 36.
    Larkindale, J., Knight, M. R., Protection against heat stressinduced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid, Plant Physiol., 2002, 128: 682–695.PubMedCrossRefGoogle Scholar
  37. 37.
    Heerklotz, D., Döring, P., Bonzelius, F. et al., The balance of nuclear import and export determines the intracellular distribution of tomato heat stress transcription factor HsfA2, Mol. Cell Biol., 2001, 21: 1759–1768.PubMedCrossRefGoogle Scholar
  38. 38.
    Kotak, S., Port, M., Ganguli, A. et al., Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsf) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization, Plant J., 2004, 39: 98–112.PubMedCrossRefGoogle Scholar
  39. 39.
    Port, M., Tripp, J., Zielinski, D. et al., Role of Hsp17.4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2, Plant Physiol., 2004, 135: 1457–1470.PubMedCrossRefGoogle Scholar
  40. 40.
    Wu, H. X., Xiao, H. H., Li, B. H., Research development for plant heat shock proteins, Biotechnology Bulletin, 2003, 4: 6–13Google Scholar
  41. 41.
    Wierrani, F., Kubin, A., Loew, H. G. et al., Photodynamic action of some sensitizers by photooxidation of luminol, Naturwissen-schaften, 2002, 89: 466–469.CrossRefGoogle Scholar
  42. 42.
    Mengiste, T., Chen, X., Salmeron, J. et al., The Botrytis Susceptible1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis, Plant Cell, 2003, 15: 2551–2565.PubMedCrossRefGoogle Scholar
  43. 43.
    Baniwal, S. K., Bharti, K., Chan, K. Y. et al., Heat stress response in plants: A complex game with chaperones and more than twenty heat stress transcription factors, J. Biosci., 2005, 29: 101–117.Google Scholar
  44. 44.
    Hahn, J. S., Hu, Z. Z., Thiele, D. J. et al., Genome-wide analysis of the biology of stress responses through heat shock transcription factor, Mol. Cell Biol., 2004, 24: 5249–5256.PubMedCrossRefGoogle Scholar
  45. 45.
    Queitsch, C., Hong, S. W., Vierling, E. et al., Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis, Plant Cell, 2000, 12: 479–492.PubMedCrossRefGoogle Scholar
  46. 46.
    Vignols, F., Mouaheb, N., Thomas, D. et al., Redox control of Hsp70-Co-chaperone interaction revealed by expression of a thioredoxin-like Arabidopsis protein, J. Bio. Chem., 2003, 278: 4516–4523.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  • Li Chunguang 
    • 1
    • 2
  • Qijun Chen
    • 1
  • Xinqi Gao
    • 1
    • 3
  • Bishu Qi
    • 1
  • Naizhi Chen
    • 1
  • Shouming Xu
    • 1
  • Jia Chen
    • 1
  • Xuechen Wang
    • 1
  1. 1.State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijingChina
  2. 2.Department of Industry EngineeringZhengzhou Institute of Aeronautic Industry ManagementZhengzhouChina
  3. 3.College of Life ScienceQufu Normal UniversityQufu ShandongChina

Personalised recommendations