Investigation on non-LTE radiation emitted from a laser-irradiated Au disk



The spectral character of X-ray emitted from laser-irradiated gold disk is studied by using the one-dimensional non-LTE multigroup radiation transport hydrodynamics code RDMG. The applicability of the “three-temperature” model in which the radiation is described with thermal conduction approximation is checked. The simulation results show that the X-ray emitted from the laser-produced gold plasm is in non-LTE, and that the atom model has significant effect on the structure of X-ray spectrum. However, the plasma states, laser absorption efficiency and X-ray conversion efficiency, which are calculated with the “three-temperature” model, are almost the same as those with non-LTE multigroup radiation transport model. This fact indicates that the “three-temperature” model can be used to study plasma states and the energy distributions produced by a laser-irradiated high-Z target. This is meaningful to the 2-D or 3-D simulation.


laser-irradiated Au target the state of plasma X-ray non-LTE radiation atom model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Plasma Physics Subject Advance Stratagem Research Group, Nuclear Fusion and Low-temperature Plasma—Challenge and Strategy Facing the 21st Century, Beijing: Science Press, 2004, 3–4. 02Google Scholar
  2. 2.
    Lindl, J., Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 1995, 2(11): 3933–4023.CrossRefADSGoogle Scholar
  3. 3.
    Lindl, J., The physics basis for ignition using indirect-drive targets on the national ignition facility, Phys. Plasmas, 2004, 11(2): 339–491.CrossRefADSGoogle Scholar
  4. 4.
    Chang Teiqiang et al., Laser-plasma Interactions and Laser Fusion, Changsha: Hunnan Science and Technology Press, 1991, 234–289, 438–447.Google Scholar
  5. 5.
    Rosen, M. D., Phillion, W. D., Rupert, V. C. et al., The interaction of 1.06 μm laser radiation with high Z disk targets, Phys. Fluids, 1979, 22(10): 2020–2031.CrossRefADSGoogle Scholar
  6. 6.
    Mead, W. C., Campbell, E. M., Estabrook, K. G. et al., Laser Irradiation of Disk Targets at 0.53 μm wavelength, Phys. Fluids, 1983, 26(8): 2316–2331.CrossRefADSGoogle Scholar
  7. 7.
    Goldstone, P. D., Goldman, S. R., Mend, W. C. et al., Dynamics of high-Z plasmas produced by a short-wavelength laser, Phys. Rev. Lett., 1987, 59(1):56–59.CrossRefADSGoogle Scholar
  8. 8.
    Takabe, H., Yamanaka, M., Mima, K. et al., Scalings of implosion experiments for high neutron yield, Phys. Fluids, 1988, 31(10): 2884–2893.CrossRefADSGoogle Scholar
  9. 9.
    Sigel, R., Tsakiris, D., Lavarenn, F. et al., Experimental observation of laser-induced radiation heat waves, Phys. Rev. Lett., 1990, 65(5): 587–590.CrossRefADSGoogle Scholar
  10. 10.
    Nishimura, H., Takabe, H., Kondo, K. et al., X-ray emission and transport in gold plasma generated by 351nm laser irradiation, Phys. Rev. A, 1991, 43(6): 3073–3085.CrossRefADSGoogle Scholar
  11. 11.
    Glenzer, S. H., Rozmus, W., Macgowan, B. J. et al., Thomson scattering from high-Z laser-produced plasmas, Phys. Rev. Lett., 1999, 82(1): 97–100.CrossRefADSGoogle Scholar
  12. 12.
    Chang Teiqiang, Ding Yongkun, Lai Dongxian et al., Laser Hohlraum coupling efficiency on the Shengguang II facility, Phys. Plasmas, 2002, 9(11): 4744–4748.CrossRefADSGoogle Scholar
  13. 13.
    Zimmerman, G. B., Kruer, W. L., Numerical simulation of laser-initiated fusion, Comments Plasma Phys. Controlled Fusion, 1975, 2: 51.Google Scholar
  14. 14.
    Harte, J. A., Alley, W. E., Bailey, D. S. et al., LASNEX-A 2-D physics code for modeling ICF, UCRL-LR-105821-96-4.Google Scholar
  15. 15.
    Larsen, J. T., Lane, S. M. HYADES_A plasma hydrodynamics code for dense plasma studies, J. Quant. Spectrosc. Radiat, Transfer, 1994, 51(1/2): 179–186.CrossRefGoogle Scholar
  16. 16.
    Takabe, H., Nishikawa, T., Computational model for NON-LTE atomic process in laser produced plasmas, J. Quant. Spectrosc. Radiat. Transfer, 1994, 51(1/2): 379–395.CrossRefADSGoogle Scholar
  17. 17.
    Ramis, R., MULTI-A computer code for one-dimensional multigroup radiation hydrodynamics, Computer Physics Communications, 1988, 49(3): 475–505.CrossRefADSGoogle Scholar
  18. 18.
    Duan Qingsheng, Chang Teiqiang, Wang Guangyu, 2D numerical simulations of laser-heated disk gold target, Chinese Journal of Computational Physics, 2002, 19(1): 57–61.Google Scholar
  19. 19.
    Chen Guangnan, Chang Teiqiang, Zhang Jun et al., The numerical simulation of non-LTE in laser-target coupling, Chinese Journal of Computational Physics, 1998, 15(4): 409–418.ADSMathSciNetGoogle Scholar
  20. 20.
    Pei Wenbing, Chang Teiqiang, Wang Guangyu et al., Radiation temperature scaling in indirect-drive hohlraums, Phys. Plasmas, 1999, 6(8): 3337–3344.CrossRefADSGoogle Scholar
  21. 21.
    Feng Tinggui, Lai Dongxian, Xu Yan, An artificial-scattering interation method for calculating multi-group radiation transfer problems, Chinese Journal of Computational Physics, 1999, 16: 199–205.Google Scholar
  22. 22.
    Xu Yan, Lai Dongxian, Li Shuanggui et al., The analysis of radiation transfer in cylinder filled with foam, Science in China, Ser. G, 2004, 34(5): 525–539.Google Scholar
  23. 23.
    Spitzer, L., Harm, R., Transport phenomena in a completely ionized gas, Phys. Rev., 1953, 89(5): 977–981.MATHCrossRefADSGoogle Scholar
  24. 24.
    Zhu Shaoping, Gu Peijun, A heat transport model including the effect of non-Maxwellian electron distribution and its application in laser produced plasma. Chin. Phps. Lett., 1999, 16(7): 520–522.CrossRefGoogle Scholar
  25. 25.
    Luciani, J. F., Mora P., Heat transport due to steep temperature gradients, Phys. Rev. Lett., 1983, 51: 1664–1667.CrossRefADSGoogle Scholar
  26. 26.
    Li Shichang, High-temperature Radiation Physics and Quantum Radiation Theory, Changsha: National Defense Industry Press, 1992, 4, 60–65, 87–95, 127–138.Google Scholar
  27. 27.
    Zhu Shaoping, Gu Peijun, The equation of laser energy deposition in laser-target coupling, High Power Laser and Particle Beams, 1999, 11(6): 687–691.Google Scholar
  28. 28.
    More, R. M., Electronic energy-levels in dense plasmas, J. Quant. Spectrosc. Radiat. Transfer. 1982, 27(3): 345–357.CrossRefADSGoogle Scholar
  29. 29.
    Perrot, F., Fast calculation of electronic structure in plasmas: The sereened hydrogenic model with L-splitting, Phys. Scr., 1989, 39(2–3): 332–337.CrossRefADSGoogle Scholar
  30. 30.
    Du Shuhua et al., The Computer Simulation of Transport Problem, Changsha: Hunan Science and Technology Press, 1989, 304–325.Google Scholar
  31. 31.
    Feng Tinggui, Two divided-mesh numerical simulation methods to solve 2D non-LTE radiation transport equation, China Nuclear Science Papers, 2004, vol.1, CNIC-01767, IAPCM-0040.Google Scholar
  32. 32.
    Chang Teiqiang, The theoretical analysis of various time scale in non-LTE ionization, Chinese Journal of Physics, 1985, (344): 528–536.Google Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  • Peijun Gu
    • 1
  • Wenbing Pei
    • 1
  • Tinggui Feng
    • 1
  • Changshu Wu
    • 1
  1. 1.Institute of Applied Physics and Computational MathematicsBeijingChina

Personalised recommendations