Skip to main content
Log in

Investigation on non-LTE radiation emitted from a laser-irradiated Au disk

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The spectral character of X-ray emitted from laser-irradiated gold disk is studied by using the one-dimensional non-LTE multigroup radiation transport hydrodynamics code RDMG. The applicability of the “three-temperature” model in which the radiation is described with thermal conduction approximation is checked. The simulation results show that the X-ray emitted from the laser-produced gold plasm is in non-LTE, and that the atom model has significant effect on the structure of X-ray spectrum. However, the plasma states, laser absorption efficiency and X-ray conversion efficiency, which are calculated with the “three-temperature” model, are almost the same as those with non-LTE multigroup radiation transport model. This fact indicates that the “three-temperature” model can be used to study plasma states and the energy distributions produced by a laser-irradiated high-Z target. This is meaningful to the 2-D or 3-D simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Plasma Physics Subject Advance Stratagem Research Group, Nuclear Fusion and Low-temperature Plasma—Challenge and Strategy Facing the 21st Century, Beijing: Science Press, 2004, 3–4. 02

    Google Scholar 

  2. Lindl, J., Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 1995, 2(11): 3933–4023.

    Article  ADS  Google Scholar 

  3. Lindl, J., The physics basis for ignition using indirect-drive targets on the national ignition facility, Phys. Plasmas, 2004, 11(2): 339–491.

    Article  ADS  Google Scholar 

  4. Chang Teiqiang et al., Laser-plasma Interactions and Laser Fusion, Changsha: Hunnan Science and Technology Press, 1991, 234–289, 438–447.

    Google Scholar 

  5. Rosen, M. D., Phillion, W. D., Rupert, V. C. et al., The interaction of 1.06 μm laser radiation with high Z disk targets, Phys. Fluids, 1979, 22(10): 2020–2031.

    Article  ADS  Google Scholar 

  6. Mead, W. C., Campbell, E. M., Estabrook, K. G. et al., Laser Irradiation of Disk Targets at 0.53 μm wavelength, Phys. Fluids, 1983, 26(8): 2316–2331.

    Article  ADS  Google Scholar 

  7. Goldstone, P. D., Goldman, S. R., Mend, W. C. et al., Dynamics of high-Z plasmas produced by a short-wavelength laser, Phys. Rev. Lett., 1987, 59(1):56–59.

    Article  ADS  Google Scholar 

  8. Takabe, H., Yamanaka, M., Mima, K. et al., Scalings of implosion experiments for high neutron yield, Phys. Fluids, 1988, 31(10): 2884–2893.

    Article  ADS  Google Scholar 

  9. Sigel, R., Tsakiris, D., Lavarenn, F. et al., Experimental observation of laser-induced radiation heat waves, Phys. Rev. Lett., 1990, 65(5): 587–590.

    Article  ADS  Google Scholar 

  10. Nishimura, H., Takabe, H., Kondo, K. et al., X-ray emission and transport in gold plasma generated by 351nm laser irradiation, Phys. Rev. A, 1991, 43(6): 3073–3085.

    Article  ADS  Google Scholar 

  11. Glenzer, S. H., Rozmus, W., Macgowan, B. J. et al., Thomson scattering from high-Z laser-produced plasmas, Phys. Rev. Lett., 1999, 82(1): 97–100.

    Article  ADS  Google Scholar 

  12. Chang Teiqiang, Ding Yongkun, Lai Dongxian et al., Laser Hohlraum coupling efficiency on the Shengguang II facility, Phys. Plasmas, 2002, 9(11): 4744–4748.

    Article  ADS  Google Scholar 

  13. Zimmerman, G. B., Kruer, W. L., Numerical simulation of laser-initiated fusion, Comments Plasma Phys. Controlled Fusion, 1975, 2: 51.

    Google Scholar 

  14. Harte, J. A., Alley, W. E., Bailey, D. S. et al., LASNEX-A 2-D physics code for modeling ICF, UCRL-LR-105821-96-4.

  15. Larsen, J. T., Lane, S. M. HYADES_A plasma hydrodynamics code for dense plasma studies, J. Quant. Spectrosc. Radiat, Transfer, 1994, 51(1/2): 179–186.

    Article  Google Scholar 

  16. Takabe, H., Nishikawa, T., Computational model for NON-LTE atomic process in laser produced plasmas, J. Quant. Spectrosc. Radiat. Transfer, 1994, 51(1/2): 379–395.

    Article  ADS  Google Scholar 

  17. Ramis, R., MULTI-A computer code for one-dimensional multigroup radiation hydrodynamics, Computer Physics Communications, 1988, 49(3): 475–505.

    Article  ADS  Google Scholar 

  18. Duan Qingsheng, Chang Teiqiang, Wang Guangyu, 2D numerical simulations of laser-heated disk gold target, Chinese Journal of Computational Physics, 2002, 19(1): 57–61.

    Google Scholar 

  19. Chen Guangnan, Chang Teiqiang, Zhang Jun et al., The numerical simulation of non-LTE in laser-target coupling, Chinese Journal of Computational Physics, 1998, 15(4): 409–418.

    ADS  MathSciNet  Google Scholar 

  20. Pei Wenbing, Chang Teiqiang, Wang Guangyu et al., Radiation temperature scaling in indirect-drive hohlraums, Phys. Plasmas, 1999, 6(8): 3337–3344.

    Article  ADS  Google Scholar 

  21. Feng Tinggui, Lai Dongxian, Xu Yan, An artificial-scattering interation method for calculating multi-group radiation transfer problems, Chinese Journal of Computational Physics, 1999, 16: 199–205.

    Google Scholar 

  22. Xu Yan, Lai Dongxian, Li Shuanggui et al., The analysis of radiation transfer in cylinder filled with foam, Science in China, Ser. G, 2004, 34(5): 525–539.

    Google Scholar 

  23. Spitzer, L., Harm, R., Transport phenomena in a completely ionized gas, Phys. Rev., 1953, 89(5): 977–981.

    Article  MATH  ADS  Google Scholar 

  24. Zhu Shaoping, Gu Peijun, A heat transport model including the effect of non-Maxwellian electron distribution and its application in laser produced plasma. Chin. Phps. Lett., 1999, 16(7): 520–522.

    Article  Google Scholar 

  25. Luciani, J. F., Mora P., Heat transport due to steep temperature gradients, Phys. Rev. Lett., 1983, 51: 1664–1667.

    Article  ADS  Google Scholar 

  26. Li Shichang, High-temperature Radiation Physics and Quantum Radiation Theory, Changsha: National Defense Industry Press, 1992, 4, 60–65, 87–95, 127–138.

    Google Scholar 

  27. Zhu Shaoping, Gu Peijun, The equation of laser energy deposition in laser-target coupling, High Power Laser and Particle Beams, 1999, 11(6): 687–691.

    Google Scholar 

  28. More, R. M., Electronic energy-levels in dense plasmas, J. Quant. Spectrosc. Radiat. Transfer. 1982, 27(3): 345–357.

    Article  ADS  Google Scholar 

  29. Perrot, F., Fast calculation of electronic structure in plasmas: The sereened hydrogenic model with L-splitting, Phys. Scr., 1989, 39(2–3): 332–337.

    Article  ADS  Google Scholar 

  30. Du Shuhua et al., The Computer Simulation of Transport Problem, Changsha: Hunan Science and Technology Press, 1989, 304–325.

    Google Scholar 

  31. Feng Tinggui, Two divided-mesh numerical simulation methods to solve 2D non-LTE radiation transport equation, China Nuclear Science Papers, 2004, vol.1, CNIC-01767, IAPCM-0040.

  32. Chang Teiqiang, The theoretical analysis of various time scale in non-LTE ionization, Chinese Journal of Physics, 1985, (344): 528–536.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijun Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, P., Pei, W., Feng, T. et al. Investigation on non-LTE radiation emitted from a laser-irradiated Au disk. SCI CHINA SER G 48, 345–360 (2005). https://doi.org/10.1360/04yw0079

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/04yw0079

Keywords

Navigation