Advertisement

Weighted composition operators between μ -bloch spaces on the unit ball

  • Zhang Xuejun 
  • Xiao Jianbin 
Article

Abstract

In this paper, necessary and sufficient conditions are given for the weighted composition operator T ψ,φ to be bounded or compact from the space βμ to βυ (or βμ,0 to β υ,0)on the unit ball of C rn. At the same time, a series of corollaries are also obtained.

Keywords

μ-Bloch space weighted composition operator boundedness compactness 

References

  1. 1.
    Hu, Z. J., Extended Cesàro operators on mixed norm spaces, Proc. Amer. Math. Soc., 2003, 131(7): 2171–2179.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Madigan, K., Matheson, A., Compact composition operators on the Bloch space, Trans. Amer. Math. Soc., 1995, 347: 2679–2687.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Zhao, R. H., Composition operators from Bloch type spaces to Hardy and Besov spaces, J. Math. Anal. Appl., 1999, 233: 749–766.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Xiao, J., Composition operators associated with Bloch type spaces, Complex Variables Theory Appl., 2001, 46: 109–121.MATHMathSciNetGoogle Scholar
  5. 5.
    Zhang, X. J., The composition operator and weighted composition operator on p-Bloch space, Chin. Ann. of Math. (in Chinese), 2003, 24(6): 711–720.MATHGoogle Scholar
  6. 6.
    Madigan, K., Composition operators on analytic Lipschitz spaces, Proc. Amer. Math. Soc., 1993, 119: 465–473.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ohno, S., Zhao Ruhan, Weighted composition operators on the Bloch space, Bull. Austral. Math. Soc., 2001, 63: 177–185.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Yoneda, R., The composition operators on weighted Bloch space, Arch. Math., 2002, 78: 310–317.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Shi, J. H., Luo, L., Composition operators on the Bloch space of several complex variables, Acta Math. Sinica (Eng. Ser.), 2000, 16: 85–98.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Zhou, Z. H., Zeng H. G., Composition operators between p-Bloch space and q-Bloch space in the unit ball, Progress in Natural Science, 2003, 13(3): 233–236.MATHMathSciNetGoogle Scholar
  11. 11.
    Zhou, Z. H., Shi, J. H., Compact composition operators on the Bloch space in polydiscs, Science in China, Ser. A, 2001, 44(3): 286–291.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Zhou, Z. H., Shi Jihuai, Composition operators on the Bloch space in polydiscs, Complex Variables, 2000, 46: 73–88.Google Scholar
  13. 13.
    Zhou, Z. H., Zeng Shaobiao, Composition operators on the Lipschitz spaces in polydiscs, Science in China, Ser. A, 2003, 46(1): 33–38.CrossRefGoogle Scholar
  14. 14.
    Hu, Z. J., Composition operators between Blochtype spaces in the polydisc, Science in China, Ser. A, 2005, 48(supp): 268–282.MATHGoogle Scholar
  15. 15.
    Zhu, K. H., Spaces of Holomorphic Functions in the Unit Ball, New York: Springer-Verlag, 2004.Google Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  1. 1.College of Mathematics and Computer ScienceHunan Normal UniversityChangshaChina
  2. 2.The School of ScienceHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations