Science in China Series A: Mathematics

, Volume 48, Issue 8, pp 1075–1082 | Cite as

Geodesic discs in teichmüller space

Article
  • 28 Downloads

Abstract

LetT(S) be the Teichmüller space of a Riemann surfaceS. By definition, a geodesic disc inT(S) is the image of an isometric embedding of the Poincaré disc intoT(S). It is shown in this paper that for any non-Strebel pointτ ∈ T(S), there are infinitely many geodesic discs containing [0] and τ.

Keywords

Teichmüller space geodesic discs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gardiner, F., Teichmüller Theory and Quadratic Differentials, New York: Wiley-Interscience, 1987.MATHGoogle Scholar
  2. 2.
    Earle, E., Li, Z., Isometrically embedded polydisks in infinite dimensional Teichmüller spaces, J. of Geometric Analysis, 1999, 9: 57–71.MathSciNetGoogle Scholar
  3. 3.
    Lakic, N., The Strebel points, Contemp. Math., 1997, 211: 417–431.MathSciNetGoogle Scholar
  4. 4.
    Erale, C., Kra, I., Krushkal, S. L., Holomorphic motion and Teichmüller space, Trans. Amer. Math. Soc., 1994, 343: 927–948.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Shen, Y., The uniqueness of quasiconformal mappings, Advances in Math. (in Chinese), 1995, 24: 237–243.Google Scholar
  6. 6.
    Li, Z., Non-uniqueness of geodesics in infinite dimensional Teichmüller spaces, Complex Variables, 1991, 23: 261–272.Google Scholar
  7. 7.
    Li, Z., Non-uniqueness of geodesics in infinite dimensional Teichmüller spaces(II), Annales Acad. Sci. Fenn. A.I. Math., 1993, 18: 355–367.MATHGoogle Scholar
  8. 8.
    Tanigawa, H., Holomorphic family of geodesics in infinite dimensional Teichmüller spaces, Nagoya Math. J., 1992, 127: 117–128.MATHMathSciNetGoogle Scholar
  9. 9.
    Li, Z., Shen, Y., A remark on the weak uniform convexity of the space of holomorphic quadratic differentials, Beijing Math., 1995, 1: 187–193.Google Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  1. 1.LMAM & School of Mathematical SciencesPeking UniversityBeijingChina

Personalised recommendations