Science in China Series E: Technological Sciences

, Volume 47, Issue 6, pp 659–666 | Cite as

EELS study on BST thin film under electron beam irradiation

Article
  • 40 Downloads

Abstract

It was found that BST thin film was damaged by the irradiation of high density electron beam (the current density was about 2 nA/cm2). In-situ and real time EELS showed that the intensity ratio of Ti to O edge and the distance between Ti and O edge changed. It indicated that the film lost oxygen and thus the oxidation states of positive ions lowered. EELS study with high spatial resolution proved that compared with the inner of columnar grains, the grain boundaries with special structure and chemical environment were the main passageway of oxygen loss.

Keywords

BST thin film irradiation damage EELS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kingon, A. I., Streiffer, S. K., Basceri, C. et al., High-permittivity perovskite thin films for dynamic ran-dom-access memories, MRS Bull., 1996, 21: 46–52.Google Scholar
  2. 2.
    Kingon, A. I., Maria, J. P., Streiffer, S. K., Alternative dielectries to silicon dioxide for memory and logic de-vices, Nature (London), 2000, 406: 1032–1038.CrossRefGoogle Scholar
  3. 3.
    Stemmer, S., Hoche, T., Keding, R. et al., Oxidation states of titanium in bulk barium titanates and in (100) fiber-textured (BaxSr1-x)Ti1+yO3+z thin films, Appl. Phys. Lett., 2001, 79: 3149–3151. [DOI]CrossRefGoogle Scholar
  4. 4.
    Stemmer, S., Streiffer, S. K., Browning, N. D. et al., Grain boundaries in barium strontium titanate thin films& colon; structure, chemistry and influence on electronic properties, Interface Sci., 2000, 8: 209–221. [DOI]CrossRefGoogle Scholar
  5. 5.
    Stemmer, S., Streiffer, S. K., Browning, N. D. et al., Accommodation of nonstoichiometry in (100) fibertextured (BaxSr1−x)Ti1+yO3+z thin films grown by chemical vapor deposition, Appl. Phys. Lett., 1999, 74: 2432–2434.[DOI]CrossRefGoogle Scholar
  6. 6.
    Jia, C. L., Lentzen, M., Urban, K., Atomic-resolution imaging of oxygen in perovskite ceramics, Science, 2003, 299: 870–873.[DOI]CrossRefGoogle Scholar
  7. 7.
    Jin, H. Z., Zhu, J., Ehrhart, P. et al., An interfacial defect layer observed at (Ba, Sr)TiO3/Pt interface, Thin Solid Films, 2003, 429 (1–2): 282–285.CrossRefGoogle Scholar
  8. 8.
    Jin, H. Z., Zhu, J., Size effect and fatigue mechanism in ferroelectric thin films, J. Appl. Phys., 2002, 92(8): 4594–4598.CrossRefGoogle Scholar
  9. 9.
    Kim, M., Ddscher, G., Browning, N. D. et al., Nonstoichiometry and the electrical activity of grain boundaries in SrTiO3, Phys. Rev. Lett., 2001, 86: 4056–4059.[DOI]CrossRefGoogle Scholar
  10. 10.
    Tafto, J., Zhu, J., Electron energy loss near edge structure (ELNES), a potential technique in the studies of local atomic arrangements, Ultramicroscopy, 1982, 9: 349–354.[DOI]CrossRefGoogle Scholar
  11. 11.
    Yoshiya, M., Tanaka, I., Kaneko, K., et al., First principles calculation of chemical shifts in ELNES/NEXAFS of titanium oxides, J. Phys.: Condens. Matter., 1999, 11: 3217–3228.[DOI]CrossRefGoogle Scholar
  12. 12.
    Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope, New York: Plenum Press, 1996, 245–300.Google Scholar
  13. 13.
    Smyth, D. M., Harmer, M. P., Peng, P., Defect chemistry of relaxor ferroelectrics and the implications for di-electric degradation. J. Am. Ceram. Soc., 1989, 72 (12): 2276–2278.CrossRefGoogle Scholar
  14. 14.
    Chan, N. H., Sharma, R. K., Smyth, D. M., Nonstoichiometry in undoped BaTiO3, J. Am. Ceram. Soc., 1981, 64 (9): 556–562.CrossRefGoogle Scholar
  15. 15.
    Leapman, R. D., Grunes, L. A., Fejes, P. L., Study of the L23 edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory, Phys. Rev. B, 1982, 26: 614–635.[DOI]CrossRefGoogle Scholar
  16. 16.
    Otten, M. T., Buseck, P. R., The oxidation state of Ti in hornblende and biotite determined by electron en-ergy-loss spectroscopy, with inferences regarding the Ti substitution. Phys. Chem. Miner., 1987, 14: 45–51.[DOI]CrossRefGoogle Scholar
  17. 17.
    Sankararaman, M., Perry, D., Valence determination of titanium and iron using electron energy loss spectros-copy. J. Mater. Sci., 1992, 27: 2731–2733.CrossRefGoogle Scholar
  18. 18.
    Lusvardi, V. S., Barteau, M. A., Chen, J. G. et al., An NEXAFS investigation of the reduction and reoxidation of TiO2 (001), Surf. Sci., 1998, 397: 237–250.[DOI]CrossRefGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  1. 1.Electron Microscopy Laboratory, Department of Materials Science and EngineeringTsinghua UniversityBeijingChina

Personalised recommendations