Chinese Science Bulletin

, Volume 50, Issue 1, pp 5–10 | Cite as

The characters of nonlinear vibration in the two-dimensional discrete monoatomic lattice



The two-dimensional discrete monoatomic lattice is analyzed. Taking nearest-neighbor interaction into account, the characters of the nonlinear vibration in two-dimensional discrete monoatomic lattice are described by the two-dimensional cubic nonlinear Schrodinger equation. Considering the quartic nonlinear potential, the two-dimensional discrete-soliton trains and the solutions perturbed by the neck mode are presented.


multiple-scale method two-dimensional nonlinear lattice two-dimensional discrete-soliton trains the solutions perturbed by the neck mode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tian, Q., Zhou, H., Zhu, R., A theoretical description for solitons in polyacetylene, Science in China, Ser. A, 2002, 54(7): 884–887.Google Scholar
  2. 2.
    Tian, Q., Wu, C. S., Solitons in superlattices: A tight-binding approach, Phys. Lett, 1999, A262: 83.Google Scholar
  3. 3.
    Kivshar, Y. S., Self-induced gap solitons, Phys. Rev. Lett., 1993, 70: 3055.CrossRefGoogle Scholar
  4. 4.
    Alfimov, G., Konotop, V.V., On the existence of gap, Physica, 2000, D146: 307.Google Scholar
  5. 5.
    Bang, O., Christiansen, P. L., If, F. et al., White noise in the two-dimensional nonlinear Schrodinger equation, Applicable Analysis, 1995, 57: 3–15.CrossRefGoogle Scholar
  6. 6.
    Ablowitz, M. J., Clarkson, P. A., Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Note Series, 1991, 149: 17–179.Google Scholar
  7. 7.
    Anders, I., Asymptotics of the coupled solutions of the modified Kadomtsev-Petnashvili equation, Proceedings of Institute of Mathematics of NAS of Ukraine, 2002, 43(1): 291–295.Google Scholar
  8. 8.
    Zakharov, V., Shock waves propagated on solitons on the surface of a fluid, Izv. Vyszh. Vchebn. Zaved. Radiofiz, 1986, 29(9): 1073.Google Scholar
  9. 9.
    Anders, I., Kotlyaroy, V., Khruslov, E., Curned asymptotic solitons of the Kadomtsev Petviashvili equation, Theor. Math. Phys., 1994, 99: 402.CrossRefGoogle Scholar
  10. 10.
    Masayoshi Tajiri, Hiroyuki Miura, Takahito Arai, Resonant interaction of modulational instability with a periodic soliton in the Devey-Stevartson equation, Phys. Rev, 2002, E66: 067601.Google Scholar
  11. 11.
    Remoissenet, M., Waves Called Solitons, Berlin-Heidelberg-New York: Springer-Verlag, 1996, 138–204.Google Scholar
  12. 12.
    Sulem, P. L., Sulem, C., Nonlinear Schrodinger Equation: Self-focusing and Wave Collapse, New York: Springer-Verlag, 1999.Google Scholar
  13. 13.
    Yoshida, H., Construction of higher order symplectic integrators, Phys. Lett., 1990, A150: 262–268.Google Scholar
  14. 14.
    Carter, J. D., Segur, H., Instabilities in the two-dimensional cubic nonlinear Schrodinger equation, Phys. Rev., 2003, E68: 045601.Google Scholar
  15. 15.
    Manakov, S. V., On the theory of two-dimensional stationary self-focusing of electromagnetic manes, Sov. Phys. JETP, 1974, 38: 232–240.Google Scholar
  16. 16.
    Benney, D. J., Roshes, G. J., Wave instabilities, Studies in Applied Mathematics, 1969, 48: 377.Google Scholar
  17. 17.
    Davey, A., Stemartson, K., On three-dimensional packets of surface waves, Proc. R. Soc. London Ser., 1974, A338: 101–110.CrossRefGoogle Scholar
  18. 18.
    Pecseli, H. L., Solitons and weakly nonlinear waves in plasmas, IEEE Transactions on Plasma Science, 1985, 13: 53–86.CrossRefGoogle Scholar
  19. 19.
    Donnelly, R., Quantized Vortices in Helium IF, Cambridge: Cambridge University Press, 1991.Google Scholar
  20. 20.
    Gross, E. P., Hydrodynamics of a superfluid condensate, Math. Phys., 1963, 4: 195.CrossRefGoogle Scholar
  21. 21.
    Pitaevskii, L. P., Vortex linex in an imperfect Bose gas, Sov. Phys. JETP, 1961, 13: 451.Google Scholar
  22. 22.
    Zahkarov, V. E., Shabat, A. B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of manes in nonlinear media, Sov. Phys. JETP, 1972, 34: 62–69.Google Scholar
  23. 23.
    Zahkarov, V. E., Shabat, A. B., On interactions between solitons in a stable medium, Sov. Phys. JETP, 1973, 37: 823–828.Google Scholar
  24. 24.
    Yang, Jianke, Ziad, H. M., Fundamental and vortex solitons in a two-dimensional optical lattice, Opt. Lett. 2003, 28(21): 2094–2096.CrossRefGoogle Scholar
  25. 25.
    Chen Zhigang, Hector, M., Eugenia, D. E. et al., Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains, Phys. Rew. Lett., 2004, 92(14): 143902.CrossRefGoogle Scholar
  26. 26.
    Zahkarov, V. E., Rubenchik, A. M., Instability of waveguides and solitons in nonlinear media, Sov. Phys. JETP, 1974, 38: 494–500.Google Scholar
  27. 27.
    Hennig, D., Tsironis, G. P., Wave transmission in nonlinear lattice, Phys. Rep., 1999, 307: 333–432.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  1. 1.Scientific and Technological OfficeDaqing Teachers CollegeDaqingChina
  2. 2.Department of PhysicsBeijing Normal UniversityBeijingChina

Personalised recommendations