Chinese Science Bulletin

, Volume 49, Issue 21, pp 2332–2338 | Cite as

SARS epidemical forecast research in mathematical model

  • Ding Guanghong
  • Liu Chang
  • Gong Jianqiu
  • Wang Ling
  • Cheng Ke
  • Zhang Di


The SIJR model, simplified from the SEIJR model, is adopted to analyze the important parameters of the model of SARS epidemic such as the transmission rate, basic reproductive number. And some important parameters are obtained such as the transmission rate by applying this model to analyzing the situation in Hong Kong, Singapore and Canada at the outbreak of SARS. Then forecast of the transmission of SARS is drawn out here by the adjustment of parameters (such as quarantined rate) in the model. It is obvious that inflexion lies on the crunode of the graph, which indicates the big difference in transmission characteristics between the epidemic under control and not under control. This model can also be used in the comparison of the control effectiveness among different regions. The results from this model match well with the actual data in Hong Kong, Singapore and Canada and as a by-product, the index of the effectiveness of control in the later period can be acquired. It offers some quantitative indexes, which may help the further research in epidemic diseases.


SARS quarantined rate transmission rate basic reproductive number SIJR model SEIJR model inflexion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Martin Enserink, One year after outbreak, SARS virus yields some secrets, Science, 2004, 304: 1097.CrossRefGoogle Scholar
  2. 2.
    Chowell, G., Fenimore, P. W., Castillo-Garsow, M. A. et al., SARS outbreak in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism, Los Alamos Unclassified Report LA-UR-03-2653, 2003.Google Scholar
  3. 3.
    Marc Lipsitch, Ted Cohen, Ben Cooper et al., Transmission dynamics and control of sever acute respiratory syndrome, Science, 2003, 300: 1966–1970.CrossRefGoogle Scholar
  4. 4.
    Steven Riley, Christophe Fraser, Christ A. Donnelly et al., Transmission dynamics of the etiological agent of SARS in Hong Kong: Impact of public health interventions, Science, 2003, 300: 1961–1966.CrossRefGoogle Scholar
  5. 5.
    Chris Dye, Nigel Gay, Modeling the SARS epidemic, Science, 2003, 300: 1884–1885.CrossRefGoogle Scholar
  6. 6.
    Chen Qizhi, Stochastic model application in SARS forecast and epidemic analysis, University of Peking College Journal (Medical Science Version) (in Chinese), 2003, 35(z1): 75–80.Google Scholar
  7. 7.
    Scholzen, A., Wird ganz Hongkong von SARS erfasst? Wissenschaftler bef ü rchten dramatischen Anstieg der Lungenseuche, Die Welt, April 10, 2003: 32.Google Scholar
  8. 8.
    Oliver Razum, Heiko Becher, Annette Kapaun et al., SARS, lay epidemiology, and fear, Lancet, 2003, 361(9370): 1739–1740.CrossRefGoogle Scholar
  9. 9.
    Christl A. Donnelly, Azra C. Ghani, Gabriel M. Leung et al., Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong, Lancet, 2003, 361(9371): 1761–1766.CrossRefGoogle Scholar
  10. 10.
    Tuen Wai Ng, Gabriel Turinici, Antoine Danchin, A double epidemic model for the SARS propagation, BMC Infectious Diseases, 2003, 3: 19, doi: 10.1186/1471-2334-3-19.CrossRefGoogle Scholar
  11. 11.
    Aron, J. L., Schwartz, I. B., Seasonality and period-doubling bifurcations in an epidemic model, J. Theory. Biol., 1984, 110: 665–679.CrossRefGoogle Scholar
  12. 12.
    Earn, J. D., Rohani, P., Bolker, B. M. et al., A simple model for complex dynamical transitions in epidemics, Science, 2000, 287: 667–670.CrossRefGoogle Scholar
  13. 13.
    Li, M. Y., Wang, L. C., Global Stability in Some SEIR Epidemic Models, IMA Volumes in Mathematics and Its Applications 126, Springer-Verlag, 2001, 295–311.Google Scholar
  14. 14.
    Ronald Gallant, George Tauchen, Efficient Method of Moments, Duke Economics Working Paper #02-06.Google Scholar
  15. 15.
    Raymond Gani, Steve Leach, Transmission potential of smallpox in contemporary populations, Nature, 2000, 414: 748–751.CrossRefGoogle Scholar
  16. 16.
    Alves, D., Haas, V. J., Caliri, A., The predictive power of R0 in an epidemic probabilistic system, Journal of Biological Physics, 2003, 29(1): 63–75.CrossRefGoogle Scholar
  17. 17.
    Yang, H. M., Population dynamics and the epidemiological model proposed by Severo, Tend?Encias em Matem′ atica Aplicada e Computacional, 2002, 3(2): 227–236.Google Scholar
  18. 18.
    Childs, J. E., Curns, A. T., Dey, M. E. et al., Predicting the local dynamics of epizootic rabies among raccoons in the United States, Proc. Natl. Acad. Sci. USA, 2000, 97(25): 13666–13671.CrossRefGoogle Scholar
  19. 19.
    Chowell, G., Hengartner, N. W., Castillo-Chavez, C. et al., The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda, J. Theor. Biol., 2003, 229(1): 119–126.CrossRefGoogle Scholar
  20. 20.
    Leo, Y. S., Chen, M., Heng, B. H. et al., Severe acute respiratory syndrome—Singapore, MMWR, 2003, 18 (52): 405–411.Google Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  • Ding Guanghong
    • 1
  • Liu Chang
    • 1
  • Gong Jianqiu
    • 1
  • Wang Ling
    • 1
  • Cheng Ke
    • 1
  • Zhang Di
    • 1
  1. 1.Department of Mechanics and Engineering Science, Shanghai Research Center of Acupuncture and MeridiansFudan UniversityShanghaiChina

Personalised recommendations