Skip to main content
Log in

Synthesis of LiCo0.3Ni0.7O2 as cathode materials for lithium ion batteries by citric acid-assisted sol-gel method

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

The synthesis process of LiCo0.3Ni0.7O2 was investigated by FT-IR, mass spectroscopy, elemental analysis, SEM, BET, TG/DTA and XRD in this paper. The results revealed that lithium and transition metal ions were trapped homogeneously on an atomic scale throughout the precursor. Li2CO3, NiO and CoO are the intermediate products obtained after decomposition of the precursor and Li2CO3 undergoes direct reactions with NiO and CoO to form LiCo0.3Ni0.7O2. Moreover, the kinetics of formation of LiCo0.3Ni0.7O2 by citrate sol-gel method is faster than the case of the conventional solid-state reaction between lithium carbonate and corresponding reactants. The single phase of LiCo0.3Ni0.7O2 was synthesized at temperature as low as 550°C. The discharge capacity of LiCo0.3Ni0.7O2 increases from 127 to 185 mAh/g as the calcination temperature increasing from 550 to 750X2. After 100 cycles, the discharge capacity of the sample calcined at 750°C is 155 mAh/g. The electrochemical study shows that the LiCo0.3Ni0.7O2 has high discharge capacity and good cycling behavior for lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Z. H., Dahn, J. R., Effect of a ZrO2 coating on the structure and electrochemistry of LixCoC2 when cycled to 4.5 V, Electrochem. Solid-State Lett., 2002, 5(10): A213-A216.

    Article  CAS  Google Scholar 

  2. Castro-Garcia, S., Castro-Couceiro, A., Senaris-Rodriguez, M. A. et al., Influence of aluminum doping on the properties of LiCoO2 and LiCo0.5Ni0.5O2 oxides, Solid State Ionics, 2003, 156: 15–26.

    Article  CAS  Google Scholar 

  3. Hwang, B. J., Santhanam, R., Chen, C. H., Effect of synthesis conditions on electrochemical properties of LiNi1−yCoyO2 cathode for lithium rechargeable batteries, J. Power Sources, 2003, 114: 244–252.

    Article  CAS  Google Scholar 

  4. Sheu, S. P., Shih, I. C., Yao, C. Y. et al., Studies of LiNiO2 in lithium-ion batteries, J. Power Sources, 1997, 68: 558–560.

    Article  CAS  Google Scholar 

  5. Kim, J., Amine, K., A comparative study on the substitution of divalent, trivalent and tetravalent metal ions in LiNi1−xMxO2 (M=Cu2+, Al3+ and Ti4+), J. Power Sources, 2002, 104: 33–39.

    Article  CAS  Google Scholar 

  6. Caurant, D., Baffler, N., Garcia, B. et al., Synthesis by a soft chemistry route and characterization of LiNixCo1-xO2 (0⩽x1) cathode materials, Solid State Ionics, 1996, 91: 45–54.

    Article  CAS  Google Scholar 

  7. Wang, G. X., Horvat, J., Bradhurst, D. H. et al., Structural, physical and electrochemical characterisation of LiNixCo1−xO2 solid solutions, J. Power Sources, 2000, 85: 279–283.

    Article  CAS  Google Scholar 

  8. Cho, J., Jung, H. S., Park, Y. C. et al., Electrochemical properties and thermal stability of LiaNi1−xCoxO2 cathode materials, J. Electrochem. Soc, 2000, 147(1): 15–20.

    Article  CAS  Google Scholar 

  9. Cho, J., Kim, G., Lim, H. S. et al., Effect of preparation methods of LiNi1−xCoxO2 cathode materials on their chemical structure and electrode performance, J. Electrochem. Soc, 1999, 146: 3571–3576.

    Article  CAS  Google Scholar 

  10. Madhavi, S., Subba Rao, B. V., Chowdari, B. V. R. et al., Effect of aluminum doping on cathodic behaviour of LiNi0.7Co0.3O2, J. Power Sources, 2001, 93: 156–162.

    Article  CAS  Google Scholar 

  11. Subba Rao, G. V., Chowdari, B. V. R., Lindner H. J., Yttrium-doped Li (Ni, Co)O2: an improved cathode for Li-ion batteries, J. Power Sources, 2001, 97-98: 313–315.

    Article  CAS  Google Scholar 

  12. Fey, G. T. K., Subramanian, V., Lu, C. Z., Tartaric acid-assisted sol-gel synthesis of LiNi0.8Co0.2O2 and its electrochemical properties as a cathode material for lithium batteries, Solid State Ionics, 2002, 152-153: 83–90.

    Article  CAS  Google Scholar 

  13. Fey, G. T. K., Shiu, R. F., Subramanian, V. et al., LiNi0.8Co0.2O2 cathode materials synthesized by the maleic acid assisted sol-gel method for lithium batteries, J. Power Sources, 2002, 103: 265–272.

    Article  CAS  Google Scholar 

  14. Moshtev, R., Zlatilova, P., Bakalova, I. et al., synthesis, XRD characterization, and cycling performance of cobalt doped lithium nickelates, J. Power Sources, 2002, 112: 30–35.

    Article  CAS  Google Scholar 

  15. Suresh, P., Rodrigues, S., Shukla, A. K. et al., synthesis of LiCo1−xNixO2 from a low temperature solution combustion route and characterization, J. Power Sources, 2002, 112: 665–670.

    Article  CAS  Google Scholar 

  16. Gover, R., Kanno, R., Mitchell, B. et al., The effects of sintering time on the structure and electrochemical properties of Li (Ni0.8Co0.2)O2, J. Power Sources, 2000, 90: 82–88.

    Article  CAS  Google Scholar 

  17. Ying, J. R., Wan, C. R., Jiang, C. Y. et al., Preparation and characterization of high-density spherical LiNi0.8Co0.2O2 cathode material for lithium secondary batteries, J. Power Sources, 2001, 99: 78–84.

    Article  CAS  Google Scholar 

  18. Jing, D. M., Zhu, W. X., Approach of Coordination Chemistry (in Chinese), Beijing: Science Press, 1996, 514–521.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiongyu Lai.

About this article

Cite this article

Tong, D., Lai, Q., Lu, J. et al. Synthesis of LiCo0.3Ni0.7O2 as cathode materials for lithium ion batteries by citric acid-assisted sol-gel method. Chin.Sci.Bull. 50, 1087–1093 (2005). https://doi.org/10.1360/04wb0111

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1360/04wb0111

Keywords

Navigation