Advertisement

Science in China Series B: Chemistry

, Volume 48, Issue 5, pp 395–401 | Cite as

Internal noise stochastic resonance in CO oxidation on nm-sized palladium particles

  • Yubing Gong
  • Zhonghuai Hou
  • Houwen Xin
Article

Abstract

Based on a stochastic mesoscopic model, the influence of internal noise on the oscillatory kinetics of the catalytic oxidation of CO on nm-sized palladium particles is studied, using the chemical Langevin equations, Poisson approximation algorithm, and exact stochastic simulation algorithm. The reaction rate oscillations are of stochastic nature due to considerable internal noise in such mesoscopic systems. It is found that the performance of the stochastic oscillations undergoes a maximum with the variation of internal noise level for a given CO partial pressure, which demonstrates the occurrence of internal noise stochastic resonance. This phenomenon implies that optimal internal noise would favor the reaction rate oscillation of CO oxidation on nm particles. Such a phenomenon is robust to the change of external parameters, such as CO pressures.

Keywords

nanometer-sized palladium particles surface catalytic CO oxidation internal noise stochastic resonance chemical Langevin equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gammaitoni, L., Hanggi, P., Jung, P. et al., Stochastic resonance, Rev. Mod. Phys., 1998, 70(1): 223–287.CrossRefGoogle Scholar
  2. 2.
    Elowitz, M. B. A., Levine, J., Siggia, E. D. et al., Stochastic gene expression in asingle cell, Science, 2002, 297: 1183–1186.CrossRefGoogle Scholar
  3. 3.
    Visart de Bocarme, T., Hruse, N., Kinetic instabilities during the NOx reduction with hydrogen on Pt crystals studied with field emission on the nanoscale, Chaos, 2002, 12: 118–130.CrossRefGoogle Scholar
  4. 4.
    Bond, G. C, Supported metal catalysts: some unsolved problems, Chem. Soc. Rev., 1991, 20: 441–447.CrossRefGoogle Scholar
  5. 5.
    Goodman, D. W., Model studies in catalysis using surface science probes, Chem. Rev., 1995, 95: 523–536.CrossRefGoogle Scholar
  6. 6.
    Bukhtiyarov, V. I., Slinko, M. G., Metallic nanosystems in catalysis, Rus. Chem. Rev., 2001: 70: 147–159.CrossRefGoogle Scholar
  7. 7.
    Henry, C. R., Catalytic activity of supported nanometer-sized metal clusters, Appl. Surf. Sci., 2000, 164: 252–259.CrossRefGoogle Scholar
  8. 8.
    Zhdanov, V. P., Kasemo, B., Simulations of the reaction kinetics on nanometer supported catalyst particles, Surf. Sci. Rep., 2000, 39: 29–104.CrossRefGoogle Scholar
  9. 9.
    Suchorski, Yu., Beben, J., James, E. W. et al., Fluctuation-induced transition in a bistable surface reaction: Catalytic CO oxidation on a Pt field emitter tip, Phys. Rev. Lett., 1999, 82:1907–1910.CrossRefGoogle Scholar
  10. 10.
    Reichert, C, Starke, J., Eiswirth, M. J., Stochastic model of CO oxidation on platinum surfaces and deterministic limit, J. Chem. Phys., 2001, 115:4829–4837.CrossRefGoogle Scholar
  11. 11.
    Sachs, C, Hildebrand, M., Volkening, S. et al, Spatiotemporal self-organization in a surface reaction: From the atomic to the mesoscopic scale, Science, 2001, 293: 1635–1638.CrossRefGoogle Scholar
  12. 12.
    Zhdanov, V. P., Oscillations in catalytic reactions on the nm scale, Catal. Lett, 2000, 69: 21–25.CrossRefGoogle Scholar
  13. 13.
    Slin’ko, M. M., Ukharskii, A. A., Peskov, N. V. et al., Chaos and synchronization in heterogeneous catalytic systems: CO oxidation over Pdzeolite catalysts, Catal. Today, 2001, 70: 341–357.CrossRefGoogle Scholar
  14. 14.
    Peskov, N. V., Slinko, M. M., Jaeger, N. I. et al., Stochastic model of reaction rate oscillations in the CO oxidation on nm-sized palladium particles, J. Chem. Phys., 2002, 116: 2098–2106.CrossRefGoogle Scholar
  15. 15.
    Jaeger, N. J., Peskov, N. V., Slinko, M. M. et al, Analysis and simulation of the dynamics of catalyzed model reaction: CO oxidation on zeolite supported palladium, Kinetics and Catalysis, 2003, 44: 183–197.CrossRefGoogle Scholar
  16. 16.
    Johanek, V., Laurin, M., Grant, A. W. et al., Fluctuations and bi-stabilities on catalyst nan op articles, Science, 2004, 304: 1639–1644.CrossRefGoogle Scholar
  17. 17.
    Sales, B. C, Turner, J. E., Maple, M. B., Oscillatory model of CO oxidation involving subsurface oxygen atoms, Surf. Sci., 1982, 114: 381–392.CrossRefGoogle Scholar
  18. 18.
    Gillespie, D. T., The chemical Langevin equation, J. Chem. Phys., 2000, 113: 297–306.CrossRefGoogle Scholar
  19. 19.
    Hou, Z. H., Xin, H. W., Internal noise stochastic resonance in a circadian clock system, J. Chem. Phys., 2003, 119: 11508–11512.CrossRefGoogle Scholar
  20. 20.
    Hou, Z. H., Xin, H. W., Optimal system size for mesoscopic chemical oscillation, Chem. Phys. Chem., 2004, 5: 407–410.Google Scholar
  21. 21.
    Gadiner, C. W., Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Berlin: Springer-Verlag, 1983.Google Scholar
  22. 22.
    Press, W. H., Teukolsky, S. A., Vetterling, W. T. et al., Numerical Recipes in C, Cambridge: Cambridge University Press, 1992.Google Scholar
  23. 23.
    Solari, H. G., Natiello, M. A., Stochastic population dynamics: The Poisson approximation, Phys. Rev. E, 2003, 67: 031918(1–12).CrossRefGoogle Scholar
  24. 24.
    Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 1977, 81: 2340–2361.CrossRefGoogle Scholar
  25. 25.
    White, J. A., Rubinstein, J. T., Kay, A. R., Channel noise in neurons, Trends Neurosci., 2000, 23: 131–137.CrossRefGoogle Scholar
  26. 26.
    Shuai, J. W., Jung, P., Optimal intracellular calcium signaling, Phys. Rev. Lett., 2002, 88: U252-U255.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  1. 1.Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of PhysicsYantai Teachers UniversityYantaiChina

Personalised recommendations