Skip to main content
Log in

Femtosecond time-resolved difference absorption spectroscopy of all-trans-β-Apo-8′-carotenal

  • Published:
Science in China Series G: Physics and Astronomy Aims and scope Submit manuscript

Abstract

The femtosecond time-resolved difference absorption spectra of all-trans-β-Apo-8′-carotenal have been recorded and analyzed by the singular-value decomposition (SVD) method followed by global fitting using a sequential model for the excited-state energy relaxation. With this model, we have obtained the excited-state absorption spectra and the lifetimes of the corresponding excited states both in nonpolar solvent n-hexane and polar solvent methanol. Three excited states, namely S3(170fs), S2(2.32ps) and S1(26ps) in n-hexane, and two excited states S2(190fs) and S1(9.4ps) in methanol have been observed. The excited-state absorption spectra of all-trans-β-Apo-8′-carotenal in methanol display a red shift and broadeness, while the lifetime of S1 state becomes shorter. It is proposed that these effects are related to the presence of a carbonyl functional group that leads to the solvent effect on the excited-state energy level. At the same time, it is shown that the SVD method is a useful tool in resolving the time-resolved absorption spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Macpherson, A. N., Gillbro, T., Solvent dependence of the ultrafast S2−S1 internal conversion rate of β-carotene, J. Phys. Chem. A, 1998, 102: 5049–5058.

    Article  Google Scholar 

  2. Schulten, K., Karplus, M., On the origin of a low-lying forbidden transition in polyenes and related molecules, Chem. Phys. Lett., 1972, 14(3): 305–309.

    Article  ADS  Google Scholar 

  3. Hudson, B., Kohler, B. A., Low-lying weak transition in the polyenea, ω-diphenyloctatetraene. Chem. Phys. Lett., 1972, 14: 299–304.

    Article  ADS  Google Scholar 

  4. Akimoto, S., Yamazaki, I., Sakawa, T. et al., Temperature effects on excitation relaxation dynamics of the carotenoid β-Carotene and its analogue β-Apo-8′-carotenal, probed by femtosecond fluorescence spectroscopy, J. Phys. Chem. A, 2002, 106: 2237–2243.

    Article  Google Scholar 

  5. Akimoto, S., Takaichi, S., Ogata, T. et al., Excitation energy transfer in carotenoid-chlorophy II protein complexes probed by femtosecond fluorescence decays, Chem. Phys. Lett., 1996, 260: 147–152.

    Article  ADS  Google Scholar 

  6. Mimuro, M., Nishimura, Y., Yamazaki, I. et al., Fluorescence properties of the allenic carotenoid fucoxanthin analysis of the effect of Keto carbonyl group by using a model compound, all-transß-Apo-8′-carotenal, J. Lumin., 1992, 51: 1–10.

    Article  Google Scholar 

  7. Zigmantas, D., Hiller, R. G., Yartsev, A. et al., Dynamics of excited states of the carotenoid peridinin in polar solvents: Dependence on excitation wavelength, viscosity, and temperature, J. Phys. Chem. B, 2003, 107: 5339–5348.

    Article  Google Scholar 

  8. Clayton, R. K., Photosynthesis Physical Mechanisms and Chemical Patterns, London: Cambridge University Press, 1980, 147.

    Google Scholar 

  9. Sashima, T., Koyama, Y., Yamada, T. et al., The 1B +u , 1B u , 2A g energies of crystalline lycopene, β-carotene, and mini-9-β-carotene as determined by resonance-Raman excitation profiles: dependence of the 1B u state energy on the conjugation length, J. Phys. Chem. B, 2000, 104: 5011–5019.

    Article  Google Scholar 

  10. Krueger, B. P., Lampoura, S. S., van Stokkum, I. H. M. et al., Energy transfer in the peridinin chlorophyll-a protein of amphidinium carterae studied by polarized transient absorption and target analysis, Biophys. J., 2001, 80: 2843–2855.

    Article  Google Scholar 

  11. Zigmantas, D., Hill, R. G., Sundström, V. et al., Carotenoid to chlorophyll energy ttransfer in the peridinin-chlorophyll-a-protein complex involves an intramolecular charge transfer state, Proc. Natl. Acad. Sci. USA, 2002, 99: 16760–16765.

    Article  ADS  Google Scholar 

  12. Becker, R. S., Bensasson, R. V., Lafferty, J. et al., Triplet excited states of carbonyl-containing polyenes, J. Chem. Soc., Faraday Trans., 1978, 274: 2246–2255.

    Google Scholar 

  13. Miki, Y., Kameyama, T., Koyama, Y. et al., Carotenoid singlet levels newly identified by fluorescence and fluorescence-excitation spectroscopy of β-Apo-8′-carotenal at 160K. J. Phys. Chem., 1993, 97: 6142–6148.

    Article  Google Scholar 

  14. Chen, W. G., Braiman, M. S., Kinetic analysis of time-resolved infrared difference spectra of the L and M intermediates of bacteriorhodopsin. Photochem. Photobiol., 1994, 54: 905–910.

    Article  Google Scholar 

  15. Yamaguchi, S., Hamaguchi, H., Femtosecond ultraviolet-visible absorption study of all-trans→13-cis•9-cis photoisomerization of retinal. J. Chem. Phys., 1998, 109: 1397–1408.

    Article  ADS  Google Scholar 

  16. Zhang, J. P., Inaba, T., Watanabe, Y. et al., Sub-picosecond time-resolved absorption spectroscopy of all-trans-neurosporene in solution and bound to the LH2 complex from Rhodobacter sphaeroides G1G, Chem. Phys. Lett., 2000, 331: 154–162.

    Article  ADS  Google Scholar 

  17. Yamaguchi, S., Hamaguchi, H., Femtosecond time-resolved absorption spectroscopy of all-trans-retinal in hexane. J. Mol. Struct., 1996, 379: 87–92.

    Article  ADS  Google Scholar 

  18. Shreve, A. P., Trautman, J. K., Owens, T. G. et al., Determination of the S2 lifetime of β-carotene, Chem. Phys. Lett., 1991, 178: 89–96.

    Article  ADS  Google Scholar 

  19. Ricci, M., Bradforth, S. E., Jimenez, R. et al. Internal conversion and energy transfer dynamics of spheroidene in solution and in the LH-1 and LH-2 light-harvesting complexes, Chem. Phys. Lett., 1996, 259: 381–390.

    Article  ADS  Google Scholar 

  20. El-Sayed, M. A., The Radiationless processes involving change of multiplicity in the diazenes, J. Chem. Phys., 1962, 36: 573–574.

    Article  ADS  Google Scholar 

  21. El-Sayed, M. A., Spin-orbit coupling and the radiationless processes in nitogen heterocyclics, J. Chem. Phys., 1963, 38: 2834–2838.

    Article  ADS  Google Scholar 

  22. Ros, M., Hogenboom, M. A., Kok, P. et al., Electronic structure of retinal and related polyenals in the lowest triplet state: an Electron Spin Echo Study, J. Phys. Chem., 1992, 96(7): 2975–2982.

    Article  Google Scholar 

  23. Tavan, P., Schulten, K., Electronic excitation in finite and infinite polyenes, Phys. Rev. B, 1987, 36: 4337–4357.

    Article  ADS  Google Scholar 

  24. Frank, H. A., Bautista, J. A., Josue, J. et al., Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids. J. Phys. Chem. B, 2000, 104: 4569–4577.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiang Weng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Quan, D., Wang, L. et al. Femtosecond time-resolved difference absorption spectroscopy of all-trans-β-Apo-8′-carotenal. Sci China Ser G: Phy & Ast 47, 208–222 (2004). https://doi.org/10.1360/03yw0241

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/03yw0241

Keywords

Navigation