Femtosecond time-resolved difference absorption spectroscopy of all-trans-β-Apo-8′-carotenal

  • Lei Zhang
  • Donghui Quan
  • Li Wang
  • Guozhen Yang
  • Yuxiang Weng


The femtosecond time-resolved difference absorption spectra of all-trans-β-Apo-8′-carotenal have been recorded and analyzed by the singular-value decomposition (SVD) method followed by global fitting using a sequential model for the excited-state energy relaxation. With this model, we have obtained the excited-state absorption spectra and the lifetimes of the corresponding excited states both in nonpolar solvent n-hexane and polar solvent methanol. Three excited states, namely S3(170fs), S2(2.32ps) and S1(26ps) in n-hexane, and two excited states S2(190fs) and S1(9.4ps) in methanol have been observed. The excited-state absorption spectra of all-trans-β-Apo-8′-carotenal in methanol display a red shift and broadeness, while the lifetime of S1 state becomes shorter. It is proposed that these effects are related to the presence of a carbonyl functional group that leads to the solvent effect on the excited-state energy level. At the same time, it is shown that the SVD method is a useful tool in resolving the time-resolved absorption spectra.


singular value decomposition femtosecond time-resolved spectroscopy all-trans-β-Apo-8′-carotenal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Macpherson, A. N., Gillbro, T., Solvent dependence of the ultrafast S2−S1 internal conversion rate of β-carotene, J. Phys. Chem. A, 1998, 102: 5049–5058.CrossRefGoogle Scholar
  2. 2.
    Schulten, K., Karplus, M., On the origin of a low-lying forbidden transition in polyenes and related molecules, Chem. Phys. Lett., 1972, 14(3): 305–309.CrossRefADSGoogle Scholar
  3. 3.
    Hudson, B., Kohler, B. A., Low-lying weak transition in the polyenea, ω-diphenyloctatetraene. Chem. Phys. Lett., 1972, 14: 299–304.CrossRefADSGoogle Scholar
  4. 4.
    Akimoto, S., Yamazaki, I., Sakawa, T. et al., Temperature effects on excitation relaxation dynamics of the carotenoid β-Carotene and its analogue β-Apo-8′-carotenal, probed by femtosecond fluorescence spectroscopy, J. Phys. Chem. A, 2002, 106: 2237–2243.CrossRefGoogle Scholar
  5. 5.
    Akimoto, S., Takaichi, S., Ogata, T. et al., Excitation energy transfer in carotenoid-chlorophy II protein complexes probed by femtosecond fluorescence decays, Chem. Phys. Lett., 1996, 260: 147–152.CrossRefADSGoogle Scholar
  6. 6.
    Mimuro, M., Nishimura, Y., Yamazaki, I. et al., Fluorescence properties of the allenic carotenoid fucoxanthin analysis of the effect of Keto carbonyl group by using a model compound, all-transß-Apo-8′-carotenal, J. Lumin., 1992, 51: 1–10.CrossRefGoogle Scholar
  7. 7.
    Zigmantas, D., Hiller, R. G., Yartsev, A. et al., Dynamics of excited states of the carotenoid peridinin in polar solvents: Dependence on excitation wavelength, viscosity, and temperature, J. Phys. Chem. B, 2003, 107: 5339–5348.CrossRefGoogle Scholar
  8. 8.
    Clayton, R. K., Photosynthesis Physical Mechanisms and Chemical Patterns, London: Cambridge University Press, 1980, 147.Google Scholar
  9. 9.
    Sashima, T., Koyama, Y., Yamada, T. et al., The 1Bu+, 1Bu, 2Ag energies of crystalline lycopene, β-carotene, and mini-9-β-carotene as determined by resonance-Raman excitation profiles: dependence of the 1Bu state energy on the conjugation length, J. Phys. Chem. B, 2000, 104: 5011–5019.CrossRefGoogle Scholar
  10. 10.
    Krueger, B. P., Lampoura, S. S., van Stokkum, I. H. M. et al., Energy transfer in the peridinin chlorophyll-a protein of amphidinium carterae studied by polarized transient absorption and target analysis, Biophys. J., 2001, 80: 2843–2855.CrossRefGoogle Scholar
  11. 11.
    Zigmantas, D., Hill, R. G., Sundström, V. et al., Carotenoid to chlorophyll energy ttransfer in the peridinin-chlorophyll-a-protein complex involves an intramolecular charge transfer state, Proc. Natl. Acad. Sci. USA, 2002, 99: 16760–16765.CrossRefADSGoogle Scholar
  12. 12.
    Becker, R. S., Bensasson, R. V., Lafferty, J. et al., Triplet excited states of carbonyl-containing polyenes, J. Chem. Soc., Faraday Trans., 1978, 274: 2246–2255.Google Scholar
  13. 13.
    Miki, Y., Kameyama, T., Koyama, Y. et al., Carotenoid singlet levels newly identified by fluorescence and fluorescence-excitation spectroscopy of β-Apo-8′-carotenal at 160K. J. Phys. Chem., 1993, 97: 6142–6148.CrossRefGoogle Scholar
  14. 14.
    Chen, W. G., Braiman, M. S., Kinetic analysis of time-resolved infrared difference spectra of the L and M intermediates of bacteriorhodopsin. Photochem. Photobiol., 1994, 54: 905–910.CrossRefGoogle Scholar
  15. 15.
    Yamaguchi, S., Hamaguchi, H., Femtosecond ultraviolet-visible absorption study of all-trans→13-cis•9-cis photoisomerization of retinal. J. Chem. Phys., 1998, 109: 1397–1408.CrossRefADSGoogle Scholar
  16. 16.
    Zhang, J. P., Inaba, T., Watanabe, Y. et al., Sub-picosecond time-resolved absorption spectroscopy of all-trans-neurosporene in solution and bound to the LH2 complex from Rhodobacter sphaeroides G1G, Chem. Phys. Lett., 2000, 331: 154–162.CrossRefADSGoogle Scholar
  17. 17.
    Yamaguchi, S., Hamaguchi, H., Femtosecond time-resolved absorption spectroscopy of all-trans-retinal in hexane. J. Mol. Struct., 1996, 379: 87–92.CrossRefADSGoogle Scholar
  18. 18.
    Shreve, A. P., Trautman, J. K., Owens, T. G. et al., Determination of the S2 lifetime of β-carotene, Chem. Phys. Lett., 1991, 178: 89–96.CrossRefADSGoogle Scholar
  19. 19.
    Ricci, M., Bradforth, S. E., Jimenez, R. et al. Internal conversion and energy transfer dynamics of spheroidene in solution and in the LH-1 and LH-2 light-harvesting complexes, Chem. Phys. Lett., 1996, 259: 381–390.CrossRefADSGoogle Scholar
  20. 20.
    El-Sayed, M. A., The Radiationless processes involving change of multiplicity in the diazenes, J. Chem. Phys., 1962, 36: 573–574.CrossRefADSGoogle Scholar
  21. 21.
    El-Sayed, M. A., Spin-orbit coupling and the radiationless processes in nitogen heterocyclics, J. Chem. Phys., 1963, 38: 2834–2838.CrossRefADSGoogle Scholar
  22. 22.
    Ros, M., Hogenboom, M. A., Kok, P. et al., Electronic structure of retinal and related polyenals in the lowest triplet state: an Electron Spin Echo Study, J. Phys. Chem., 1992, 96(7): 2975–2982.CrossRefGoogle Scholar
  23. 23.
    Tavan, P., Schulten, K., Electronic excitation in finite and infinite polyenes, Phys. Rev. B, 1987, 36: 4337–4357.CrossRefADSGoogle Scholar
  24. 24.
    Frank, H. A., Bautista, J. A., Josue, J. et al., Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids. J. Phys. Chem. B, 2000, 104: 4569–4577.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  • Lei Zhang
    • 1
  • Donghui Quan
    • 1
  • Li Wang
    • 1
  • Guozhen Yang
    • 1
  • Yuxiang Weng
    • 1
  1. 1.Institute of PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations