Advertisement

Effect of induced shielding current transmission in longitudinal direction on levitation force of melt grown single-domain YBa2Cu3O7−x cylindrical superconductor

  • Wanmin Yang
  • Lian Zhou
  • Yong Feng
  • Pingxiang Zhang
  • R. Nicolsky
  • R. de Andrade
Article
  • 35 Downloads

Abstract

A novel layer deletion method is used to experimentally investigate the effect of induced shielding current transmission (ISCT) in the longitudinal direction on the levitation force of a single-domain YBa2Cu3O7−x (YBCO) cylindrical superconductor (ϕ30×7 mm). In the experiment the sample was gradually sliced into two equal sheets, at the middle height along a diameter with 5 mm every step. The experimental results show that the levitation force is closely related with the ISCT in the longitudinal direction. Any layer deletion, even a small piece of layer deletion can reduce the levitation force of the sample. After the whole layer was deleted the levitation force can diminish about 50%. It is also found that the levitation force is directly proportional to the effective factor of surface area, which is equal to the top surface area divided by the total surface area parallel to the top surface of the sample.

Keywords

melt growth single domain YBCO levitation force induced current distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Murakumi, M., Melt processing of high-temperature superconductors, Progress in Materials Science, 1994, 38: 311–357.CrossRefGoogle Scholar
  2. 2.
    Ullrich, M., Walter, H., Leenders, A. et al., Batch production of high quality customized shaped monolithic HTSC. Physica C, 1999, 311: 86–92.CrossRefADSGoogle Scholar
  3. 3.
    Shi, D. L., Qu, D., Sagar, S. et al., Domain-orientation dependence of levitation force in seeded melt grown single-domain YBa2Cu3Ox Appl. Phys. Lett., 1997, 70(26): 3606–3608.CrossRefADSGoogle Scholar
  4. 4.
    Henning, W., Parks, D., Weistein, R. et al. Stable magnetic levitation with adjustable ratio of levitation force to restoring force using rings of zero-field cooled YBa2Cu3Oy samples, Supercond. Sci. Technol., 2000, 3: 447–1449.Google Scholar
  5. 5.
    Kim, C. J., Kim, H. J., Joo, J. H., et al., Effects of the seed distance on the characteristics of the (100)/(100) junctions of top-seeded melt growth processed YBCO superconductors using two seeds. Physica C, 2000, 336: 23–238.CrossRefGoogle Scholar
  6. 6.
    Kaiser, A. W., Adam, M., Bornemann, H. J., Characterization and properties of batch-processed melt-textured YBCO, Supercond. Sci. Technol., 1998, 11: 26–29.CrossRefADSGoogle Scholar
  7. 7.
    Wu, M., Strasser, T., Littzkendorf, D. et al., Preparation of MTG Y(Ho)BCO large bulk samples with Y2O3 excess for cryomagnetic applications, Physica C, 1998, 282–287: 2645–2646.Google Scholar
  8. 8.
    Endon, A., Chauhan, H. S., Egi, T. et al., Macrosegregation of Y2Ba1Cu1O5 particles in Y1Ba2Cu3O7−d crystals grown by an undercooling method, J. Mater. Res., 1996, 11: 795–803.CrossRefADSGoogle Scholar
  9. 9.
    Yang, W. M., Zhou, L., Feng, Y. et al., The effect of excess Y2O3 addition on the levitation force of melt processed YBCO bulk superconductors, Physica C, 1998, 305: 269–274.CrossRefADSGoogle Scholar
  10. 10.
    Hull, J. R., Hilton, E. F., Mulcahy, T. M. et al., Low friction in mixed-mu superconducting bearings, J. Appl. Phys., 1995, 78: 6833–6838.CrossRefADSGoogle Scholar
  11. 11.
    Weinberger, B., Lynds, R. L., Hull, J. R. et al. Low friction in high temperature superconductor bearings, Appl. Phys. Lett., 1991, 59: 1132–1134.CrossRefADSGoogle Scholar
  12. 12.
    Hull, J. R., Superconducting bearings, Supercond. Sci. Technol., 2000, 13: R1-R15.CrossRefADSGoogle Scholar
  13. 13.
    Hull, J. R., Mulcahy, T. M., Uherka, K. L. et al., Flywheel energy storage using superconducting magnetic bearing. Appl. Supercond., 1994, 2: 449–455.CrossRefGoogle Scholar
  14. 14.
    Leender, A., Ullrich, M., Freyhardt, H. C. et al., Fabrication of HTS monoliths for a bearing system in cryogenics vessel, IEEE Trans. Appl. Supercond., 1999, 9: 992–995.CrossRefGoogle Scholar
  15. 15.
    Ohashi, S., Tamura, S., Hirane, Y., Levitation characteristics of HTSC-permanent magnet hybrid flywheel system. IEEE Trans. Appl. Supercond., 1999, 9(2): 988–991.CrossRefGoogle Scholar
  16. 16.
    Miyagawa, Y., Kameno, H., Takahata, R., et al., A 0.5 kWh flywheel energy storage system using a high Tc superconducting magnetic bearing, IEEE Trans. Appl. Supercond., 1999, 9(2): 996–999.CrossRefGoogle Scholar
  17. 17.
    Coombs, T. A., Campbell, A. M., Ganney, I. et al. Superconducting bearings in flywheels, Matr. Sci. Eng. B, 1998, 53: 225–258.CrossRefGoogle Scholar
  18. 18.
    Ren Zhongyou, Wang Jiasu, Wang Suyu et al., A hybrid maglev vehicle using permanent magnets and high temperature superconductor bulks, Physica C, 2002, 378–381: 873–876.Google Scholar
  19. 19.
    Yang, W. M., Zhou, L., Feng, Y., et al., A small maglev Car model using YBCO bulk superconductors, Proceedings of the Maglev'2000, in Rio de Janeiro, 2000, 107–111.Google Scholar
  20. 20.
    Kovalev, L. K., Ilushin, K. V., Koneev, S. M. A. et al., Hysteresis and reluctance electric machines with bulk HTS rotor elements, IEEE Trans. On Appl. Supercond., 1999, 9(2): 1261–1264.CrossRefGoogle Scholar
  21. 21.
    Weh, H., Future steps in developing H-Tc SC bulk material levitation technique for transportation systems, Proceedings of MT-15, 15th International Conference on Magnet Technology, 1998, 883–889.Google Scholar
  22. 22.
    Wang, J., Yanoviak, M. M., Raj, R., Type II magnetic levitation on sinter-forged YBa2Cu3Ox superconductor, J. Am. Ceram. Soc., 1989, 72(5): 846–848.CrossRefGoogle Scholar
  23. 23.
    Shi, D. L., Lahiri, K., Qu, D. et al. Surface nucleation, domain growth mechanisms, and factors dominating superconducting properties in seed melt grown YBa2Cu3Ox J. Mater. Res., 1997, 12(11): 3036–3045.CrossRefADSGoogle Scholar
  24. 24.
    Teshima, H., Morita, M., Hashimoto, M., Comparison of the levitation forces of melt-processed YBaCuO superconductors for different magnets. Physica C, 1996, 269: 15–21.CrossRefADSGoogle Scholar
  25. 25.
    Yang, W. M., Zhou, L., Feng, Y. et al., The effect of magnetic field distribution on the levitation force of single domain YBCO bulk superconductors. Advances in Cryogenic Engineering, 1999, 46(A): 663–667.Google Scholar
  26. 26.
    Yang, W. M., Zhou, L., Feng, Y. et al., The effect of magnet configurations on the levitation on the levitation force of melt processed YBCO bulk superconductors, Physica C, 2001, 354: 5–12.CrossRefADSGoogle Scholar
  27. 27.
    Tent, B. A., Qu, D., Shi, D. et al., Angle dependence of magnetization in a single-domain YBa2Cu3Ox sphere, Phys. Rev. B, 1998, 58: 11761–11767.CrossRefADSGoogle Scholar
  28. 28.
    Yang, W. M., Zhou, L., Feng, Y. et al., The grain-alignment and its effect on the levitation force of melt processed YBCO single-domained bulk superconductors, Physica C, 307(1998): 271–276.CrossRefADSGoogle Scholar
  29. 29.
    Yang, W. M., Zhou, L., Feng, Y. et al., The effect of the grain alignment on the levitation force in single domain YBa2Cu3Oy bulk superconductors. Physica C, 1999, 319: 164–168.CrossRefADSGoogle Scholar
  30. 30.
    Murakami, M., Oyama, T., Fujimoto, H. et al., Large levitation force due to flux pinning in YBaCuO superconductors fabricated by melt-powder-melt-growth process, Jpn. J. Appl. Phys., 1990, Pt. 2, 29: L1991-L1994.CrossRefADSGoogle Scholar
  31. 31.
    Hellman, F., Gyorgy, E. M., Johnson, D. W., Jr., et al., Levitation of a magnet over a flat type II superconductor, J. Appl. Phys., 1988, 63(2): 447–450.CrossRefADSGoogle Scholar
  32. 32.
    Yang, W. M., Zhou, L., Feng, Y. et al., Effect of perimeters of induced shielding current loops on levitation force in melt grown single-domain YBa2Cu3Ox bulk, Appl. Phys. Lett., 2001, 79(13):2043–2045.CrossRefADSGoogle Scholar
  33. 33.
    Yang, W. M., Zhou, L., Feng, Y. et al., The effect of excess barium oxide addition on the properties of Nd1Ba2Cu3Oy by the melt-growth process, Physica C 2000, 337: 115–120.CrossRefADSGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  • Wanmin Yang
    • 1
    • 2
    • 3
  • Lian Zhou
    • 2
  • Yong Feng
    • 2
  • Pingxiang Zhang
    • 2
  • R. Nicolsky
    • 3
  • R. de Andrade
    • 3
  1. 1.Department of PhysicsShaanxi Normal UniversityXi'anChina
  2. 2.Northwest Institute for Nonferrous Metal ResearchXi'anChina
  3. 3.LASUP-DEEUFRJ Ilha do FundaoRio de JaneiroBrasil

Personalised recommendations