Skip to main content
Log in

Experimental EOS determination of aluminum at Mbar pressure

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A shock wave is driven by a laser pulse of 1.2 ps duration (FWHM), with the intensity of ∼1014 W/cm2 at 785 nm, irradiating a 500 nm thick aluminum foil. A chirped laser pulse split from the main pulse is used to detect the shock breakout process at the rear surface of the target based on frequency domain interferometry. The mean shock velocity determination benefits from the precise synchronization (<100fs resolution) of the shock pump and probe laser pulses, which is calculated from the time the shock takes to travel the 500 nm thick aluminum. The released particle velocity determination benefits from the chirped pulse frequency domain interferometry. The average shock velocity is 15.15 km/s and the shock release particle velocity is 15.24 km/s, and the corresponding pressure after shock is 3.12 Mbar under our experimental condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Remington, B. A., Arnett, D., Drake, R. P., Modeling astrophysical phenomena in the laboratory with intense lasers, Science, 1999, 284: 1488–1493.

    Article  ADS  Google Scholar 

  2. Widmann, K., Guethlein, G., Foord, M. E. et al., Interfeometric investigation of femtosecond laser-heated expanded states, Phys. Plasmas, 2001, 8(9): 3869–3872.

    Article  ADS  Google Scholar 

  3. Cauble, R., Perry, T. S., Bach, D. R. et al., Absolute equation-of-state data in 10–40 Mbar (1–4 TPa) regime, Phys. Rev. Lett., 1998, 80(6): 1248–1251.

    Article  Google Scholar 

  4. Celliers, P. M., Collins, G. W., Da Silva, L. B., et al., Shock-induced transformation of liquid deuterium into a metal fluid, Phys. Rev. Lett., 2000, 84(24): 5564–5567.

    Article  ADS  Google Scholar 

  5. Santala, M. I. K., Zepf, M., Watts, I. et al., Effect of the plasma density scale length on the direction of fast electrons in relative laser-solid interactions, Phys. Rev. Lett., 2000, 84(7): 1459–1462.

    Article  ADS  Google Scholar 

  6. Sheng, Z. M., Sentoku, Y., Mima, K. et al., Angular distribution of fast electrons, ions, and bremsstrahlung x/γ-rays in intense laser interaction with solid targets, Phys. Rev. Lett., 2000, 85(25): 5340–5343.

    Article  ADS  Google Scholar 

  7. Cauble, R., Phillion, D. W., Hoover, T. J. et al., Demonstration of 0.75 Gbar planar shocks in X-ray driven colliding foils, Phys. Rev. Lett., 1993, 70(14): 2102–2105.

    Article  ADS  Google Scholar 

  8. Zel'dovich, Ya. B., Raizer, Yu. P., Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, New York: Academic, 1966.

    Google Scholar 

  9. Collins, G. W., Da Silva, L. B., Celliers, P. et al., Measurement of the equation of state of deuterium at the fluid insulator-metal transition, Science, 1998, 281: 1178–1181.

    Article  Google Scholar 

  10. Benuzzi-Mounaix, A., Koenig, M., Boudenne, J. M. et al. Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments, Phys. Rev. E, 1999, 60(3): R2488-R2491.

    Article  ADS  Google Scholar 

  11. Ng, A., Parfeniuk, D., DaSilva, L., Hugoniot measurement for laser-generated shock waves in aluminum, Phys. Rev. Lett., 1985, 54(24): 2604–2607.

    Article  ADS  Google Scholar 

  12. Barker, L. M., Hollenbach, R. E., Laser interferomenter for measuring high velocities of any reflecting surface, J. Appl. Phys., 1972, 43(11): 4669–4675.

    Article  ADS  Google Scholar 

  13. Evans, R., Badger, A. D., Falliès, F. et al., Time-and space-resolved optical probing of femtosecond-laser-driven shock waves in aluminum, Phys. Rev. Lett., 1996, 77: 3359–3362.

    Article  ADS  Google Scholar 

  14. Gahangan, K. T., Moore, D. S., Funk, D. J. et al., Measurement of shock wave rise time in metal thin film, Phys. Rev. Lett., 2000, 85(15): 3205–3208.

    Article  ADS  Google Scholar 

  15. Ng, A., Forsman, A., Celliers, P., Heat front propagation in femtosecond-laser-heated solids, Phys. Rev. E, 1995, 51(6): R5208-R5211.

    Article  ADS  Google Scholar 

  16. Chen, J. P., Li, R. X., Zeng, Z. N. et al., Shock-accelerated flying foil diagnostic with a chirped pulse spectral interferometry, Clin. Phys. Lett., 2003, 20(4): 541–543.

    Article  ADS  Google Scholar 

  17. Tokunaga, E., Terasaki, A., Kobayashi, T., Frequency-domain interferometry for femtosecond time-resolved phase spectroscory, Opt. Lett., 1992, 17(16): 1131–1133.

    Article  ADS  Google Scholar 

  18. Scherer, N. F., Carlson, R. J., Matro, A., et al., Fluorescence-detected wave packet interferometry: time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses, J. Chem. Phys., 1991, 95(3): 1487–1511.

    Article  ADS  Google Scholar 

  19. Chien, C. Y., La Fontaine, B., Desparois, A. et al. Single-shot chirped-pulse spectral interferometry used to measure the femtosecond ionization dynamic of air. Opt. Lett., 2000, 25(8): 578–580.

    Article  ADS  Google Scholar 

  20. Geindre, J. P., Audebert, P., Rebibo, S. et al., Singe-shot spectral interferometry with chirped pulses, Optics Lett., 2001, 26(20): 1612–1614.

    Article  ADS  Google Scholar 

  21. Isbell, W. M., Shipman, F. H., Jones, A. H., Hugoniot Equation of State Measurements for Eleven Materials to Five Megabars, AD 721920:42.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Jianping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Li, R., Zeng, Z. et al. Experimental EOS determination of aluminum at Mbar pressure. Sci China Ser G: Phy & Ast 47, 416–423 (2004). https://doi.org/10.1360/03yw0059

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/03yw0059

keywords

Navigation