Science in China Series A: Mathematics

, Volume 46, Issue 2, pp 159–168 | Cite as

Connecting orbits among Denjoy minimal sets for monotone twist map

  • Wei Cheng
  • Chongqing Cheng


In a Birkhoff region of instability for an exact area-preserving twist map, we construct some orbits connecting distinct Denjoy minimal sets. These sets correspond to the local, instead of global minimum of the Lagrangian action. In the earlier work, Mather constructed connecting orbits among Aubry-Mather sets and the global minimizer of the Lagrangian action.


twist map Denjoy minimal sets connecting orbits 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aubry, S., The twist map, the extended Frenkel-Kontorova model, devil’s staircase, Physica D, 1983, 8: 240–258.CrossRefGoogle Scholar
  2. 2.
    Aubry, S., Le Daeron, P. Y., The discrete Frenkel-Kontorova model and its extensions, Physica D, 1983, 8: 381–422.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Mather, J. N., Existence of quasi-periodic orbits for twist homoemorphism of the annulus, Topology, 1982, 21: 457–467.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Mather, J. N., More Denjoy invariant sets for area preserving diffeomorphisms, Comment. Math. Helv., 1985, 60: 508–557.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Mather, J. N., Variantional construction of orbits of twist diffeomorphism, J. Amer. Math. Soc., 1991, 4(2): 203–267.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bangert, V., Mather sets for twist maps and geodesics on tori, Dynamics Repoted I, 1988, 1–45.Google Scholar
  7. 7.
    Cheng, W., Cheng, C. Q., Existence of infinite non-Birkhoff periodic orbits for area-preserving monotone twist maps, Science in China, Ser. A, 2000, 43(8): 810–817.MATHCrossRefGoogle Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  • Wei Cheng
    • 1
  • Chongqing Cheng
    • 1
  1. 1.Department of MathematicsNanjing UniversityNanjingChina

Personalised recommendations