Skip to main content
Log in

Superconvergence for rectangular serendipity finite elements

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

Based on an orthogonal expansion and orthogonality correction in an element, superconvergence at symmetric points for any degree rectangular serendipity finite element approximation to second order elliptic problem is proved, and its behaviour up to the boundary is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, C. M., Superconvergence of finite element solution and its derivatives, Numer. Math. J. Chinese Univ., 1981, 2: 118–125.

    Google Scholar 

  2. Douglas, J., Dupont, T., Wheeler, M., An L∞-estimate and a superconvergence result for a Galerkin method for elliptic equation based on tensor products of piecewise polynomials, RAIRO Model. Math. Anal. Numer., 1974, 8: 61–66.

    MathSciNet  Google Scholar 

  3. Lesaint, P., Zlamal, M., Superconvergence of the gradient of finite element solutions, RAIRO Model. Math. Anal. Numer., 1979, 13: 139–166.

    MATH  MathSciNet  Google Scholar 

  4. Zlamal, M., Some superconvergence results in the finite element method, Lecture Notes in Math. 606, Springer-Verlag, 1977, 353-362.

  5. Zlamal, M., Superconvergence and reduced integration in the finite element method, Math. Comp., 1978, 32: 663–685.

    Article  MATH  MathSciNet  Google Scholar 

  6. Schatz, A., Sloan, I., Wahlbin, L., Superconvergence in finite element method and mesh that are locally symmetric with respect to a point, SIAM J. Numer. Anal., 1996,33: 505–526.

    Article  MATH  MathSciNet  Google Scholar 

  7. Wahlbin, L., Superconvergence in Galerkin Finite Element Methods, Berlin: Springer-Verlag, 1995.

    MATH  Google Scholar 

  8. Babuska, I., Strouboulis, T., Upadhyay, C. et al., Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutons of Laplace’s, Poisson’s and the elasticity equations, Numer. Methods for PDE, 1996, 12: 347–392.

    Article  MATH  MathSciNet  Google Scholar 

  9. Babuska, I., Strouboulis, T., The Finite Element Method and Its Reliability, London: Oxford University Press, 2001.

    Google Scholar 

  10. Zhang, Z. M., Derivative superconvergent points in finite element solutions of Poisson’s equation for the serendipity and intermediate families—A theoretical justification, Math. Comp., 1998, 67: 541–552.

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, C. M., The element analysis method and superconvergence, in Finite Element Methods: Supercomver-gence, Post-processing and a Posteriori Estimates, Lecture Notes in Pure and Applied Mathematics (eds. Krizek, M., Neittaanmaki, P., Stenberg, R.), Vol. 196, New York: Marcel Dekker, Inc., 1998, 71–84.

    Google Scholar 

  12. Chen, C. M., Superconvergence for triangular finite elements, Science in China, Ser. A, 1999, 42(6): 917–924.

    Article  MATH  Google Scholar 

  13. Chen, C. M., Structure Theory of Superconvergence for Finite Elements, Changsha: Hunan Science and Technique Press, 2001.

    Google Scholar 

  14. Frehse, J., Rannacher, R., Eine L1-Fehlerabschatzung diskreter Grundlosungen in der Methods der finiten Elemente, Tagungaband “Finite Elemente”, Bonn. Math. Schrift., 1975, 89: 92–114.

    Google Scholar 

  15. Rannacher, R., Scoot, R., Some optimal error estimates for piecewise linear finite element approximations, Math. Comp., 1982, 38: 437–445.

    Article  MATH  MathSciNet  Google Scholar 

  16. Chen, C. M., Optimal points of the approximation solution for Galerkin method for two-point boundary value problem, Numer. Math. J. Chinese Univ., 1979, 1: 73–79.

    MATH  MathSciNet  Google Scholar 

  17. Chen, C. M., Xiong, Z. G., Interior superconvergence for a rectangular finite element with 12 parameters, Acta Sci. Nat. Univ. Norm. Hunan, 1999, 22: 1–7.

    MathSciNet  Google Scholar 

  18. Fufaev, V., Dirichlet problem for domain with cusps, Soviet Math. Doklady, 1960, 113: 37–39.

    MathSciNet  Google Scholar 

  19. Volkov, E., Differentiability properties of solutions of boundary value problems for the Laplace and Poisson equations on a rectangle, Steklov Institute publications, 1965, 77: 89–112.

    MATH  Google Scholar 

  20. Chen, C. M., W1,∞-interior estimates for finite element methods on regular mesh, J. Comput. Math., 1985, 3: 1–7.

    MATH  MathSciNet  Google Scholar 

  21. Bramble, J. H., Nitsche, J. A., Schatz, A. H., Maximum-norm interior estimates for Ritz-Galerkin methods, Math. Comp., 1975, 29: 677–688.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C. Superconvergence for rectangular serendipity finite elements. Sci. China Ser. A-Math. 46, 1–10 (2003). https://doi.org/10.1360/03ys9001

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1360/03ys9001

Keywords

Navigation